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1. Introduction

In this thesis we investigate multiple questions about the long term behaviour of certain

Markovian processes. Although Markovian processes can be conisdered as the simplest

dependence structure one can get (apart from i.i.d. processes), even the simplest questions

become surprisingly difficult when we try to deal with slightly unusual processes.

In Chapter 2, we look at biological inheritance as a Markov process. Indeed, the genetic

information of a child depends on the genetic information of his ancestors only through

his parents. The catch is that a child has two parents instead of one, consequently the

family tree is not simply a chain. We present what one can say about the long term

behavior of such processes, both in general and specially for the processes arising in the

biological models. We also provide statistical investigation on fitting the model in our

focus to Hungarian population data. Chapter 2 is based on the paper [6]. This is based

on the joint work with Gábor Tusnády, my advisor and Balázs Ráth, who suggested the

ideas for the model and the proof of Theorem 2.1. It turned out that a similar model has

been previously investigated by Dawson [2].

In Chapter 3, we work on mixing time estimates. Although most of the times people

search for upper bounds on mixing times of certain chains, we now look for the best chain

within a class. This involves getting a universal lower bound on the mixing time for

the target class. We also relax the reversibility condition which would give us technical

convenience but also pose an unnecessary restriction on the chain. Chapter 3 is based

on the papers [4] and [5]. This part of my research has been done with the help and

supervision of John Tsitsiklis.

2. Convergence of Bi-Markov processes

We consider a population with sexual reproduction, selection, synchronous generations

on a short time frame in the evolutionary sense. We are interested in the inheritance of

a certain congenital abnormality which is related to some gene mutations. We assume

all relevant loci have the same effect in view of the birth defect, so the only thing we

keep track of is the number of mutant genes one has. To get the genetic information of

offsprings, we need recombination, mutation, and selection.

During recombination we assume crossovers may happen, and there is a low number of

mutant genes, that is, each of them is inherited independently with probability 1/2. If the

two parents have x and y mutant genes, the child will receive a random number of mutant

genes from the Binom(x+ y, 1/2) distribution.

The child is affected by additional mutation, this is represented by adding an indepen-

dent Poisson(µ) random variable to the inherited mutant gene count.
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Given the number of mutant genes the child has, we have to find out two things: whether

he/she is affected by the disorder and whether he/she is fertile (and viable). We assume

each mutant gene may cause the disorder to appear or the loss of fertility. There is an

ordering of the two symptoms, a gene causing the loss of fertility also causes the disorder

to appear. The probability of a single gene not causing the disorder is denoted by ∆, and

the probability of not inhibiting fertility is ρ. Clearly ρ > ∆. Once again, each gene has

a random effect on the individual in the following way:

• with probability ∆ it has no effect,

• with probability ρ−∆ it causes the individual to be affected by the disorder, but

has no effect on fertility,

• with probability 1 − ρ it causes the individual to be affected by the disorder and

lose fertility.

We call this setup the Poisson model.

We want to deal with the long-term behavior of the genotype distribution. It is rather

clear that if there is no selection, which has the role of filtering out the mutant genes,

then their number will grow unboundedly. Consequently, to have a chance of stationarity,

we need ρ < 1. We claim that in this case the distribution of mutant genes in the

population stabilizes over time. We assume there is a separate set of parameters for

females (µf , ρf ,∆f ) and males (µm, ρm,∆m). The model used by Dawson [2] does not

use sex dependent parameters, but includes a separate modifier gene that can alter the

parameters. We do not see biological evidence for µf and µm to differ but it does no harm

to include it in our study, and we get a more general result. The credit for the main ideas

of the proof goes to Balázs Ráth.

Theorem 2.1. If ρf , ρm < 1 then for any pair of initial distributions of mutant genes,

the population will converge in distribution to a pair of limiting Poisson distributions with

parameters

λf =
ρfρm(µm − µf ) + 2ρfµf

2− ρf − ρm
, λm =

ρfρm(µf − µm) + 2ρmµm
2− ρf − ρm

,

for females and males, respectively.

Let us now assume the population is in the stationary state. It is easy to check that the

number of mutant genes a newborn has follows a Poisson distribution with the following

parameters depending on the gender:

λf + λm
2

+ µf =
λf
ρf
,

λf + λm
2

+ µm =
λm
ρm

.



3

Consequently his/her probability for being healthy is

pf = exp

(
λf

∆f − 1

ρf

)
, pm = exp

(
λm

∆m − 1

ρm

)
.

Similarly, the probability of being fertile is

p̃f = exp

(
λf
ρf − 1

ρf

)
, p̃m = exp

(
λm

ρm − 1

ρm

)
.

However, if we look at a family tree at once, we see a complex multidimensional joint dis-

tribution. We want to answer simple questions like “What is the (conditional) probability

of an aunt of a malformed child being affected”.

We claim that we can get a closed form expression on any reasonable conditional prob-

abilities like the one above. The resulting formulas often become enormous, but there is a

way to derive them with reasonable effort. We do this by recursively simplifying the family

tree. As the simplest example, the conditional probability of the sibling of a malformed

child being affected is

qS = 1−
exp

((
µy+

λf+λm

2

)
(∆y−1)

)
−exp

(
µx(∆x−1)+µy(∆y−1)+

λm+λf
4

((∆x+1)(∆y+1)−4)
)

1−exp
((
µx+

λf+λm

2

)
(∆x−1)

) ,

where x, y is the gender of the child and his/her sibling, respectively (m of f).

In order to validate our model we have to check how well does it follow biological princi-

ples and how does it fit the population. We also compare with the classical Gaussian model

used by Czeizel and Tusnády in [1]. The initial requirement for a model of inheritance

is to have high conditional probabilities for first order relatives, in other words qS � p.

Another guideline we use is a fundamental approximation on multifactorial disorders given

by the Edwards formula [3] which states that qS ≈
√
p.

We don’t want to go into theoretical details, let us just present Figure 1 showing the

relation between log p and log qS for µ ∈ [5 · 10−5, 3] and ∆ ∈ [0.1, 1). On the left side, we

assume complete selection, that is, ρ = ∆, on the right side we consider a partial selection

with ρ = (1 + ∆)/2.

The upper diagonal line shows where the Edwards formula is precisely satisfied, the lower

one corresponds to probabilities of the Gaussian model. We prefer parameters where the

disorder is mainly inherited, that is, λ� µ. Thus we split the domain the model sweeps

through into three regions, the values we can reach while λ ≥ 10µ, or just 10µ > λ ≥ µ, or

only µ ≥ λ (top to bottom). Although the model does not satisfy the formula in general,

we may choose the parameters to do so. Also, it is clearly visible that for rare disorders

the Poisson model can achieve substantially higher conditional probabilites for siblings.
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Figure 1. Model probabilities and the Edwards formula

Further checks have been made for sex dependent parameters and different relatives and

they are in line with the current findings.

Another way to qualify the power of the Poisson model is to check its goodness-of-fit

on the Hungarian data. The population data were gathered and published by Czeizel and

Tusnády [1].

In Table 1 we present the goodness-of-fit values for the fitted data. We calculate the

weighted average of the divergences for each relative. From another viewpoint, this is the

normalized log-likelihood loss when changing real frequencies to the predicted probabilities.

disorder
GOF for GOF for

all relatives first order relatives

ASB 0.012189 0.000615

CLP 0.005341 0.008989

CHPS 0.007234 0.007099

VSD 0.005122 0.003212

CDH-BB 0.031767 0.002309

CDH-CB 0.050819 0.007456

STEV 0.007865 0.007432

Table 1. Goodness-of-fit of the Poisson model to Hungarian data

Finally let us present the parameter values for the best fit in Table 2.
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disorder µm µf ρm ρf ∆m ∆f λm λf

ASB 0.015 0.026 0.018 0.010 0.018 0.010 0.00027 0.00026

CLP 0.012 0.0075 0.019 0.143 5.0e-14 0.085 0.00024 0.0012

CHPS 0.020 0.006 0.069 0.078 0.061 0.00052 0.0015 0.00052

VSD 0.016 0.013 0.0040 0.023 1.7e-17 1.3e-17 6.2e-5 0.00031

CDH-BB 0.036 0.175 0.028 0.142 3.4e-32 0.105 0.0014 0.027

CDH-CB 0.030 0.237 0.010 0.137 6.5e-16 0.102 0.00050 0.035

STEV 0.015 0.0073 0.091 0.048 0.047 1.2e-14 0.0015 0.00039

Table 2. Parameters of the Poisson model for Hungarian data

The form of selection investigated in this chapter is fortunate and ensures stability. The

goodness-of-fit to population data is acceptable, the only problem is the extraordinarily

small values for the parameter λ. This means that the number of bad genes is usually

zero, and the appearance of a single bad gene causes the malformation or selection. Still,

the low λ does not necessarily mean that the number of genes involved is small. As we

mentioned, we qualify our solution partial. It is a first acceptable solution for the problem

resulting in a sound and practically applicable model. Still, the stability of the models

with threshold based selection (like the Gaussian model) remains open.

In a certain way the Poisson setup is richer then the Gaussian one as the expression of the

malformation is randomized. The situation of this model is close to dominant Mendelian

inheritance with restricted expression. If the probability of the expression depends on

the gender then the situation is rather complex. When allowing gender differences in the

parameters the Poisson model becomes richer: conditional probabilities (of a relative being

affected when the child is affected) show stronger gender dependence in the Poisson model

than in the Gaussian one. Now we are facing the question, whether the Poisson model

incorporated with environmental effects offer a substantially better goodness-of-fit than

the Gaussian one.

3. Markov chain mixing time estimates

We know that an irreducible aperiodic Markov chain on a finite state space approaches

its stationary distribution. To formulate this we need a metric to measure the distance

of probability distributions. One of the widely used options is the total variation norm

defined as follows:

Definition 3.1. Given a signed measure ν on X , the total variation norm is defined as

‖ν‖TV = max
A⊆X
|ν(A)|.
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It is natural to ask for the speed the distribution converges. This is especially important

for applications, where the Markov chain is allowed to run for a limited number of time

steps. One possibility to quantify this speed is by the introduction of the mixing time:

Definition 3.2. For a Markovchain with stationary distribution π and transition matrix

P = (pij), with pij denoting the probability of moving from state i to state j, we define

the mixing time of the chain as

tmix = tmix(P, ε) = max
σ∈P(X )

min
{
k : ‖σP k − π‖TV ≤ ε

}
.

We might omit some of the arguments when they are obvious or unimportant. Note that

this might be infinite.

A remarkable property of certain Markov chains is reversibility which often makes these

approximations easier, see e.g. Kelly [7].

Definition 3.3. A Markov chain is reversible if starting from the stationary distribution π,

the probability of the consecutive pair (i, j) is the same as the probability of the consecutive

pair (j, i). Formally:

πipij = πjpji ∀i, j.

Our primary goal is to determine the best possible mixing time we can achieve by

changing the transition probabilites but not the set of allowed transitions. We also require

the stationary distribution to always remain uniform. Our first result is for Markov chains

where the graph of allowed transitions is a cycle.

Theorem 3.4. Consider a Markov chain on a cycle with n nodes having a doubly stochastic

transition matrix P . Then, with some global constant C > 0 we have

tmix(P, 1/8) ≥ Cn2.

It is well known that the best mixing time of a reversible Markov-chain on a cycle with n

nodes is of the order of n2. Consequently this theorem tells us that allowing non-reversible

chains does not help in this case.

In the hope of achieving some speedup we increase the number of allowed transitions

by adding some random edges to the cycle. The target edge density of the added edges is

cn−α for some parameter α ∈ (1, 2). Thus we expect cn2−α extra edges. Let us introduce

three slightly different models for choosing them.

M1: We add a random matching on the almost equidistant [n2−α] nodes

{[inα−1], 0 ≤ i < n2−α}.
M2: From all possible long range edges we draw [n2−α] randomly uniformly.

M3: For all possible long range edge we randomly decide to include it or not. Each edge

is included independently with probability n−α.
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In the beginning we only consider the simple case of homogeneous chains when there are

three common transition probabilities: qc+r for clockwise and qc−r for counter-clockwise

transitions and ql/d(α) for long range edges. These qc > r > 0, ql > 0 are some global

constants. There might be a problem if a node has a lot of long range edges causing the

sum of transition probabilities to go above 1. The following theorem ensures we can avoid

this issue.

Theorem 3.5. There is a function d(α) : (1, 2)→ N such that there is no node with more

than d(α) long range edges asymptotically almost surely (a.a.s.) for M1, M2, M3 graphs.

Consequently, assuming 2qc + ql ≤ 1 and using the current d(α), homogeneous chains will

be feasible Markov chains a.a.s.

Using Theorem 3.4 we can show the following bound.

Proposition 3.6. For M1, let us assume the nodes with long range edges are equidistant

from each other. Then for any homogeneous chain,

tmix ≥ Cn2α−2.

All the other mixing time bounds are based on estimating the conductance:

Definition 3.7. The conductance of a Markov chain on the set X is

Φ = min
∅6=S(X

Φ(S) = min
∅6=S(X

Q(S, SC)

π(S)π(SC)
= min
∅6=S(X

∑
i∈S,j∈Sc πipij

π(S)π(SC)
,

where SC denotes the complement of S.

Theorem 3.8. For M1 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n1−α < Φ < c2n
1−α.

Theorem 3.9. For M2 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n
1−α

log n
< Φ < c2

n1−α

log n
.

Theorem 3.10. For M3 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n
1−α

log n
< Φ < c2

n1−α

log n
.
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Connecting the conductance with the mixing time is done using the theorem of Lovász

and Simonovits [8]. This theorem does not require the reversibility of the chain but

assumes that it is lazy. A Markov chain is lazy if pii ≥ 1/2 for all i.

Theorem 3.11. For an aperiodic, irreducible, lazy Markov chain the following bounds for

mixing time holds:

c1
1

Φ
≤ tmix ≤ c2

1

Φ2
log

(
1

π∗

)
,

where π∗ = mini πi.

The stationary distribution is uniform for all the Markov chains we work with, so the

last logarithmic factor simplifies to log n.

Corollary 3.12. For M1 the mixing time of the reversible homogeneous chain satisfies

the following inequality a.a.s.:

c1n
2α−2 < tmix < c2d(α)2n2α−2 log n.

Similarly, for the M2 and M3 reversible homogeneous chains we have

c1n
2α−2 log2 n < tmix < c2d(α)2n2α−2 log3 n.

For non-reversible homogeneous chains, the asymptotic bounds become

c1n
α−1 < tmix < c2d(α)2n2α−2 log n,

c1n
α−1 log n < tmix < c2d(α)2n2α−2 log3 n.

for homogeneous M1 and homogeneous M2 or M3 chains, respectively.

At this stage, it is easy to transform this result as follows:

Corollary 3.13. The bounds of Corollary 3.12 also hold for the fastest M1, M2, M3

chains.

There is a big gap between the lower and upper bounds for non-reversible chains. Still,

we hope there is a considerable gain as shown in Figure 2. This is a plot of mixing times

of homogeneous reversible and non-reversible chains on several graphs coming from M2,

for α = 1.5.

The results for these graphs are plotted as a histogram on a log-log scale. The upper

cluster contains the data for the reversible chains, the lower for the non-reversible ones.

The two noisy diagonal lines are simply the averages.

It is clearly visible that non-reversible chains offer a significant speedup over reversible

ones in this setting. We hope to quantify this gain in the future but at this point, we do

not aim for a bold guess as log n and nδ factors can be easily mistaken for each other on

this scale.
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Figure 2. Log-log plot for mixing times of homogeneous M2 chains

On the other hand we may guess the mixing time for reversible chains is roughly n logδ n

based on Corollary 3.12. By looking for the best fit on the data we arrive at the estimate

δ = 2.02, which suggests that the lower bound is the one that is sharp.
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