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THEORETICAL AND NUMERICAL ANALYSIS OF OPERATOR SPLITTING PROCEDURES

Preliminaries

In my thesis I investigate the operator splitting procedures which are used to solve partial dif-

ferential equations numerically. They can be considered as time-discretization methods which

simplify or even make possible the numerical treatment of differential equations. They have been

systematically studied first in Marchuk [17] and Strang [19], and since then they are widely ap-

plied to model various physical processes. The idea behind operator splitting procedures is that a

certain physical phenomenon is the combined effect of several processes. The behaviour of a quan-

tity (e.g. the concentration of chemical species) is formulated by a partial differential equation in

which the local time derivative depends on the sum of the sub-operators describing the different

processes. These sub-operators have different nature. Each sub-operator defines a sub-problem,

for which usually there exists an efficient numerical method providing fast and accurate solution.

For the whole (non-split) problem (being represented by the sum of the sub-operators) may not

be found an adequate numerical method. Hence, application of the operator splitting procedures

maens that instead of the whole problem, we treat the sub-problems and the corresponding sub-

operators separately. The solution of the original problem is then obtained from the numerical

solutions of the sub-problems. In my thesis I investigate the sequential, Strang, and weighted

splittings. Let us consider an abstract Cauchy problem on the Banach space X with the linear

operator G:







du(t)

dt
= Gu(t), t ≥ 0,

u(0) = x ∈ X.

(ACP)

The one-parameter family of linear operators
(

U(t)
)

t≥0
is called strongly continuous operator

semigroup on the Banach space X if

(i) U(0) = I,

(ii) U(t + s) = U(t)U(s) for all t, s ≥ 0,

(iii) for every x ∈ X, the orbit maps t → U(t)x are continuous from R
+ into X.

The operator G with the domain D(G) is called the generator of the above operator semigroup if

Gx := lim
h→0

U(h)x − x

h
for all x ∈ D(G) with

D(G) :=

{

x ∈ X : lim
h→0

U(h)x − x

h
exists

}

.

It can be shown that the abstract Cauchy problem has a unique solution if
(

G, D(G)
)

is a

generator of a strongly continuous semigroup. Therefore, throughout my tesis I assume that the
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operators
(

A, D(A)
)

and
(

B, D(B)
)

generate the strongly continuous semigroups
(

T (t)
)

t≥0
and

(

S(t)
)

t≥0
on X, respectively, and the sum G = A + B defined on D(A + B) := D(A) ∩ D(B)

generates the strongly continuous semigroup
(

U(t)
)

t≥0
on X. The numerical solutions un(t) of

the problem (ACP) obtained by applying the different splitting procedures are defined as:

sequential splitting: usq
n (t) := [S(t/n)T (t/n)]nx,

Strang splitting: uSt
n (t) := [T (t/2n)S(t/n)T (t/2n)]nx,

weighted splitting: uw
n (t) := [ΘS(t/n)T (t/n) + (1 − Θ)T (t/n)S(t/n)]nx

for all t ≥ 0 and n ∈ N fixed, and x ∈ D(A) ∩ D(B), where Θ ∈ (0, 1). Since operator

splitting procedures can be regarded as certain time-discretization methods, their convergence is

a crucial question in the applications. In my thesis I analyse the convergence of the operator

splitting procedures by using the theoretical results of operator semigroup theory, and numerical

experiments as well.

Methods

In my thesis I apply the results of the fields of operator splitting procedures, operator semigroup

therory on Banach spaces (approximation and perturbation theory of operator semigroups), nu-

merical analysis of finite difference methods applied for solving initial value problems (notions

of convergence, consistency, and stability, and Lax’s Theorem), operator semigroup approach to

abstract delay equations (product Banach spaces, operator matrices), large-scale environmental

modelling (air pollution transport models), and development of computer codes.

Theses of the thesis

In Chapter 1 I give an overview on the analytical and numerical tools (operator semigroup

theory, numerical analysis, delay equations, air pollution transport models) used in the thesis. In

Chapter 2 I define the operator splitting procedures, and present some results from the literature

concerning their consistency analysis, and I introduce the results of Ito and Kappel [14] and

Zagrebnov [21] about the convergence of the splitting procedures applied together with another

time-discretization method. I show the following new result (see Csomós and Sikolya [12]).

1. Thm. 2.4.5. Zagrebnov shows in Theorem 10.18 of [21] that under certain conditions the

estimates

‖f( t
n
A)g( t

n
B) − et(A+B)‖ ≤ C1

ln n

n
,

‖f 1/2( t
n
A)g( t

n
B)f 1/2( t

n
A) − et(A+B)‖ ≤ C2

ln n

n
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hold for all t ≥ 0 and n ∈ N with some constants C1, C2 > 0. I show that the requirements

for the functions f and g are fulfilled if they represent A–stable, consistent, and positivity

preserving numerical methods. Hence, application of such methods together with sequential

and Strangs splittings results in a norm-convergent numerical scheme.

In Chapter 3 the convergence of the splitting procedures is analysed. In Section 3.1 I investigate

the case when the split sub-problems are solved exactly (see Csomós and Nickel [10]), while in

Section 3.2 the solutions of the sub-problems are obtained by applying spatial and temporal

approximation schemes as well (see Bátkai, Csomós, and Nickel [2]).

2. Prop. 3.1.6, Prop. 3.1.7. I investigate the relationship between Lax’s and Chernoff’s

Theorem (see Thm. 8 in Section 34.3 of Lax [16] and Cor. 5.3 in Chapter III. of Engel and

Nagel [13]). I prove that the assumptions of the two theorems are equivalent if the step size

of the numerical method varies in a compact interval, and the operator is the generator of

the semigroup approximated by the investigated numerical method.

3. Lemma 3.1.8. I prove that the stability criterion of the sequential splitting implies the

stabilitiy criteria of the Strang and weighted splittings. This result holds for the operators

applied in reverse order as well. Hence, it suffices to control only one stability requirement

for all investigated splitting procedures, that is, there exist constants M ≥ 1, ω ∈ R such

that

‖[S(t/n)T (t/n)]n‖ ≤ Meωt for all t ≥ 0, n ∈ N. (S)

The result is valid also when spatial and temporal discretization methods are used as well

(Lemma 3.2.7., Lemma 3.2.19.).

4. Prop. 3.1.10. With the help of Chernoff’s Theorem and the Trotter Product Formula (see

Cor. 5.3 and Cor. 5.8 in Chapter III. of Engel and Nagel [13]), I show that the sequential,

Strang, and weighted splittings are convergent at a fixed time level if the stability condition

(S) is satisfied.

5. Thm. 3.2.14–16. Based on Thm. 6.7 in Pazy [18] and the paper of Ito and Kappel

[15], I prove a modified version of Chernoff’s Theorem being valid also for approximate

semigroups (Thm. 3.2.11). With its help I show that the convergence of the sequential,

Strang, and weighted splittings follows from the stability condition similar to (S) as well as

in the case when the semigroups are approximated by approximate semigroups
(

Tn(t)
)

t≥0

and
(

Sn(t)
)

t≥0
, n ∈ N with generators An and Bn, respectively, satisfying the followings:
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(i) Consistency:

(a) lim
n→∞

JnAnPnx = Ax for all x ∈ D(A),

(b) lim
n→∞

JnBnPnx = Bx for all x ∈ D(B).

(ii) Convergence:

(a) lim
n→∞

JnTn(t)Pnx = T (t)x for all x ∈ D(A)

and for each arbitrary fixed t ≥ 0,

(b) lim
n→∞

JnSn(t)Pnx = S(t)x for all x ∈ D(B)

and for each arbitrary fixed t ≥ 0.

In this case the convergence means that the solution u(t) of the problem (ACP) for the

different splitting procedures can be obtained as:

u(t) = lim
n→∞

Jn[S(t/n)T (t/n)]nPnx,

u(t) = lim
n→∞

Jn[T (t/2n)S(t/n)T (t/2n)]nPnx,

u(t) = lim
n→∞

Jn[ΘS(t/n)T (t/n) + (1 − Θ)T (t/n)S(t/n)]nPnx with Θ ∈ (0, 1)

for all x ∈ X, and uniformly for t in compact intervals, for the sequential, Strang, and

weighted splitting, respectively. The operators Jn and Pn act between the Banach spaces

X and Xn, where the latter is the space of the function defined on the spatial mesh. This

case represents the convergence of the split solution when the split sub-problems are solved

by using spatial approximations.

6. Thm. 3.2.20–22. I show that the convergence of the sequential, Strang, and weighted

splittings remains valid also in the case when the semigroups are approximated using spatial

and also temporal approximations. In this case the spatial discretization schemes need to

be convergent at each time level, and the time-discretization methods should be stable and

consistent:

(i) Stability:

(a) ‖[qn(t)]k‖ ≤ 1 for all t ∈ (0, T ], n, k ∈ N,

(b) ‖[rn(t)]k‖ ≤ 1 for all t ∈ (0, T ], n, k ∈ N,

and qn(0) = I and rn(0) = I for all n ∈ N.

(ii) Consistency:

(a) lim
t→0

1
h
(Jnqn(t)Pnx − x) exists for all x ∈ D(A), n ∈ N,

(b) lim
t→0

1
h
(Jnrn(t)Pnx − x) exists for all x ∈ D(B), n ∈ N.
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(iii) Spatial convergence:

(a) lim
n→∞

Jnqn(t)Pnx = T (t)x for all x ∈ D(A)

and for each arbitrary fixed t ∈ (0, t0],

(b) lim
n→∞

Jnrn(t)Pnx = S(t)x for all x ∈ D(B)

and for each arbitrary fixed t ∈ (0, t0].

Then the convergence of the splitting procedures together with the spatial and time-

discretization methods means that the solution u(t) of the problem (ACP) can be evaluated

as the following limits:

u(t) = lim
n→∞

Jn[rn(t/n)qn(t/n)]nPnx,

u(t) = lim
n→∞

Jn[qn(t/2n)rn(t/n)qn(t/2n)]nPnx,

u(t) = lim
n→∞

Pn[Θrn(t)qn(t) + (1 − Θ)qn(t)rn(t)]nPnx, Θ ∈ (0, 1)

for the sequential, Strang, and weighted splittings, respectively.

In Chapter 4 I analyse the convergence of the splitting procedures applied to the abstract delay

equation:















u̇(t) = Cu(t) + Φut, t ≥ 0,

u(0) = x ∈ X,

u0 = f ∈ Lp
(

[−1, 0], X
)

,

(DE)

where the history function ut is defined by ut(σ) := u(t + σ) for σ ∈ [−1, 0]. The equation (DE)

can be written as an abstract Cauchy problem (ACP) by using the following operator G on the

product Banach space Ep := X × Lp
(

[−1, 0], X
)

, 1 ≤ p < ∞:

G :=

(

C Φ

0 d
dσ

)

with the domain

D(G) :=
{

(

y
g

)

∈ D(C) × W1,p
(

[−1, 0], X
)

: g(0) = y
}

.

Motivated by Section 3.3.2 in the book of Bátkai and Piazzera [1] and the results of Webb [20], I

study two ways how to split the operator G in the abstract Cauchy problem (the two splittings

of the operator correspond to the cases of bounded and unbounded delay operator Φ).

7. Thm. 4.1.2, 4.1.8. I prove that the sequential, Strang, and weighted splittings applied to

the delay equation (DE) are convergent at a fixed time level for bounded and unbounded
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delay operator Φ as well, since the stabilty criterion (S) is fulfilled under the assumptions

that the operator
(

C, D(C)
)

is a generator and dissipative, and the delay operator Φ has a

special form. I illustrate my result with numerical examples as well (see Csomós and Nickel

[10]).

8. Thm. 4.2.5, 4.2.7. I show that the sequential, Strang, and weighted splittings are conver-

gent for the two ways of splitting of the operator appearing in the abstract Cauchy problem

corresponding to the delay equation (DE), also in the case when consistent and convergent

spatial approximation schemes are applied to solve the sub-problems (see Bátkai, Csomós,

and Nickel [2]).

In Chapter 5 the order of the total time-discretization error is investigated, i.e., when splitting

procedures are applied together with other time-discretization methods (see Csomós and Faragó

[9]).

9. Table 5.5. With the help of analytical and numerical computations, I show that an in-

teraction error appears when splitting procedures are applied together with other time-

discretization methods used to solve the split sub-problems numerically. I have found that

the order of the total time-discretization method (splitting and numerical method together)

is the minimum of the order of the splitting and that of the numerical method.

10. Fig. 5.5–5.7. I introduce another new kind of error notion for measuring the total error

of the solution obtained by applying a splitting procedure together with time-discretization

methods. Since the exact solution is generally not known, we need to estimate its total

error by a practical error which can be computed from the numerical solutions. I show that

this error behaves like the total error, therefore, it is a useful estimate for it.

In Chapter 6 I present an idea how to shorten the computational time of the air pollution transport

model (see Zlatev [22])

∂c

∂t
= −

(

∂ (uc)

∂x
+

∂ (vc)

∂y

)

+ K

(

∂2c

∂x2
+

∂2c

∂y2

)

+ E − σc (APTM)

with some initial and boundary conditions, where c(x, y, t) is the unknown concentration of a

chemical species varying in space and time. Functions u, v, K, E, and σ represent the effects of

the different physical processes: advection, diffusion, emission, and deposition.

11. Fig. 6.10. Implementing numerically the air pollution transport model (APTM), I demon-

strate that the application of a splitting procedure can lead to shorten the computational

time if different numerical methods with different time steps are chosen for each split sub-

problem. As a comparison, I apply upwind and semi–Lagrangian scheme for the advection

sub-problem in (APTM). Since the latter requires larger time step, it needs less computa-

tional step, i.e., shorter computational time (see Csomós [4]).
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Conclusions

From the results of my thesis I conclude the followings. The investigated splitting procedures are

convergent when the exact split solutions are known, and also in the case when stable, consistent,

and convergent spatial and temporal discretization methods are used to approximate them. In

the latter case the order of the total error is always the minimum of the order of the splitting and

the order of the numerical method. This means that the order of the total time-discretization

can be less than the order of the applied splitting procedure, if some lower order numerical

method with improper chosen time step is used together with it.

Application of the previous results implies the convergence of the investigated splitting procedures

for abstract delay equations in case of bounded and unbounded delay operators. One can also

conclude that the computational time of an air pollution transport model can be shortened by

applying splitting procedures, since each sub-problem can be solved using different numerical

methods with different time steps.
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