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Notations

∆ probability of a single mutant gene not causing the disorder.

ρ probability of a single mutant gene not causing selection.

µ parameter of the Poisson distribution corresponding to the mutation.

λ parameter of the Poisson distribution of mutant genes.

in the stationary population.

p population probability of the disorder.

qS conditional probability of a sibling of a malformed child being affected.

X the state space of the Markov chain.

n = |X |, the size of the state space.

SC = X \ S, the complement of the set S.

P(X ) the set of probability distributions on the finite state space X .

‖ν‖TV = max
A⊆X
|ν(A)|, the total variation norm.

tmix(P, ε) = max
σ∈P(X )

min
{
k : ‖σP k − π‖TV ≤ ε

}
, the mixing time.

πi stationary probability of state i.

π∗ = mini πi.

pij transition probability from state i to state j.

Φ the conductance of the Markov chain.

Q the reversible part of the transition matrix.

qi = Qi−1,i = Qi,i−1.

rR the non-reversible part of the transition matrix.
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Chapter 1

Introduction

One could claim that Markov processes are the simplest stochastic processes in time and

that we completely understand their behavior. Indeed, apart from i.i.d. processes, the

Markov property governs the simplest dependence structure for a random process in time.

There is a huge literature covering most of the naturally occurring cases satisfying reason-

able conditions, see e.g. the detailed book of Meyn and Tweedie [43]. Still, when we try

to deal with slightly unusual processes even the simplest questions become surprisingly

difficult. We deal with some problems falling into this category in this thesis.

In Chapter 2, we look at biological inheritance as a Markov process. Indeed, the genetic

information of a child depends on the genetic information of his ancestors only through

his parents. The catch is that a child has two parents instead of one, consequently the

family tree is not simply a chain. We present what one can say about the long term

behavior of such processes, both in general and specially for the processes arising in the

biological models. We also provide statistical investigation on fitting the model in our

focus to Hungarian population data. Chapter 2 is based on the paper [27]. This is based

on the joint work with Gábor Tusnády, my advisor and Balázs Ráth, who suggested the

ideas for the model and the proof of Theorem 2.9. It turned out that a similar model has

been previously investigated by Dawson [13].

In Chapter 3, we work on mixing time estimates. Although most of the times people

search for upper bounds on mixing times of certain chains, we now look for the best chain

within a class. This involves getting a universal lower bound on the mixing time for

the target class. We also relax the reversibility condition which would give us technical

convenience but also pose an unnecessary restriction on the chain. Chapter 3 is based

on the papers [25] and [26]. This part of my research has been done with the help and

supervision of John Tsitsiklis.

The papers used have been reworked and expanded for the purpose of this thesis.
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Chapter 2

Convergence of Bi-Markov processes

A discrete time Markov chain can be viewed as an iteration of independent random func-

tions ft : X → X for t = 1, 2, . . .. What happens if we iterate X 2 → X functions instead?

In other words, the current state depends on two parents rather than one.

Such systems come up naturally in the study of genetic inheritance, hence the term

parent. We first investigate the general properties of these so called Bi-Markov processes,

then we show how to use them to model biological processes. Introducing these processes

this way implies a discrete time version. We note that the continuous time version has

been investigated by Hatvani, Toókos and Tusnády [29].

For a realization of a Markov chain, we often think of a series of random variables

X0, X1, . . . , Xt, . . . satisfying the proper conditional independence condition. For Bi-Markov

processes, a similar realization quickly becomes cumbersome, when checking the past of

Xt, we need 2t ancestors at time 0. If t is allowed to increase to infinity, we need infinite

copies of Xs at each time step s.

As an alternative, we might follow the evolution of the distribution of the states. Let

us denote the probability of the system being at state i at time t by pi(t). For Markov

chains, we get a recursion

pi(t+ 1) =
∑
j

h̃(j, i)pj(t),

with some h̃(j, i) transition probabilities. The analogous formula for Bi-Markov processes:

pi(t+ 1) =
∑
j,k

h(j, k, i)pj(t)pk(t).

Now the coefficients h(j, k, i) denote the probability of arriving at state i after the pair

of states (j, k). The straightforward conditions on h are

6



h(j, k, i) ≥ 0 ∀j, k, i ∈ X ,∑
i

h(j, k, i) = 1 ∀j, k ∈ X . (2.1)

The questions for these processes are similar to the ones for Markov chains. We call a

Markov or Bi-Markov process ergodic if the distribution of the states approaches a certain

stationary distribution independent from the initialization. Under what conditions can we

ensure the ergodicity of a Bi-Markov process? Can it happen that the distribution changes

periodically? Maybe even in a chaotic way?

The existence of a stationary distribution for Markov chains is provided by an appli-

cation of the Perron-Frobenius theorem:

Theorem 2.1 (Perron-Frobenius). Every finite Markov chain has a stationary distribu-

tion. It is unique for irreducible chains.

One of the fundamental necessary conditions for ergodicity are different variants of

Doeblin’s condition [18]. Let us quote two versions.

Theorem 2.2 (Doeblin). Assume we have a Markov chain, a probability measure ν and

some ε > 0, k ≥ 1 such that

ν(i) < ε =⇒ ∀j h̃k(j, i) < 1− ε.

Then the structure of stationary distributions can be described precisely. For irreducible

Markov chains, the stationary distribution is unique and the condition ensures ergodicity.

Theorem 2.3 (Doeblin). Assume we have a Markov chain, a probability measure ν and

some δ > 0, k ≥ 1 such that

∀i, j h̃k(j, i) > δν(i).

Then the Markov chain is ergodic.

Detailed discussion of the above theorems can be found in the book of Doob [19].

Only a very small part of this general theory carries through for Bi-Markov processes.

However, the existence of a stationary distribution is true in a much more general setting.

We may apply Brouwer’s fixed point theorem [8] as a time step is a continuous function

from the convex body of probability distributions to itself.

Theorem 2.4 (Brouwer). Every finite Bi-Markov process has a stationary distribution.
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While this more general theorem provides existence, it does not tell anything about

uniqueness or ergodicity. The necessary condition of Doeblin remains true only in a

significantly restricted version found by László Gerencsér:

Theorem 2.5. Assume we have a Bi-Markov process, a probability measure ν and some

δ ≥ 1/2 such that

∀i, j, k h(j, k, i) > δν(i).

Then the Bi-Markov process is ergodic.

Proof. We show the claim of the theorem using a coupling argument. The condition of

the theorem tells us that with probability δ the process forgets the past and draws an

independent new state from the distribution ν.

Let us start with two initially uncoupled copies of the process. We couple the resetting

of the processes, that is, with probability δ both copies jump to the same state according

to ν.

Let us denote by αn the probability of being coupled after n steps. The state in the

next step is coupled either if both of its predecessors are already coupled or if they become

coupled in the current transition. This leads us to the equation

αn+1 = α2
n + δ(1− α2

n).

Starting from α0 = 0 and using 0 < δ < 1 this is a monotone increasing bounded sequence

consequently it tends to a limit. The possible limit points can be obtained by solving the

quadratic equation obtained by replacing αn, αn+1 with α∞ in Equation 2. We get

α1
∞ = 1, α2

∞ =
δ

1− δ
.

Asymptotically almost sure coupling occurs when there is no limit point less than 1

which corresponds to δ ≥ 1/2. Any initialization of the process must lead to the same

stationary distribution because we may initialize one copy of the process to be already

stationary.

What can we say when the condition holds only for some δ < 1/2? Without the

restriction on δ the Doeblin condition for a finite state space Bi-Markov process simply

means that all h(j, k, i) are positive. We do not know the answer for Bi-Markov processes,

but it turns out that this condition does not imply ergodicity for closely related dynamics.

We get a more general class if we omit Condition 2.1 on the sum of transition probabilities.

In this setting we need to normalize after each step to get a valid probability distribution.
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Thus the new dynamics of general Bi-Markov processes is

p̃i(t+ 1) =
∑
j,k

h(j, k, i)pj(t)pk(t),

pi(t+ 1) =
p̃i(t+ 1)∑
j p̃j(t+ 1)

.

Tusnády [52] showed that this related model provides counterexamples when there is

no restriction on δ.

Theorem 2.6 (Tusnády). There exists a general Bi-Markov process on 3 states such

that every transition probability is positive and the distribution of the states changes in a

periodic way.

Conjecture 2.7 (Tusnády). There exists a general Bi-Markov process on 4 states such

that every transition probability is positive and the distribution of the states shows a chaotic

behavior. This is verified by computer simulations.

Partial results on this conjecture have been presented by Dénes [14].

These results weaken the hope for a generic necessary condition providing ergodicity.

At this point it is more likely that we need a unique approach for every process we work

with.

To demonstrate some positive results we might expect, let us show an example of Bi-

Markov processes which is reasonably understood. We sketch the problem investigated

by Komlós et al. see [36] for details. At time 0, imagine an infinite series of customer

service agents with X0(i) customers to serve, i = 0, 1, . . .. These X0(i) are independent,

identically distributed, non-negative integer variables. Each agent deals with a single

customer (if any) in its queue and sends the remaining ones to the next level agents, each

of which accepts customers from two of the lower level agents. In the end transitions

happen according to the following rule:

Xj(i) = (Xj−1(2i)− 1)+ + (Xj−1(2i+ 1)− 1)+, i = 0, 1, . . .

We want to decide whether the agency will be able to deal with all customers or will it

collapse under the load. Note that this can be regarded as a proper Bi-Markov process,

however, the only randomness is coming from the starting variables as the transitions are

completely deterministic.

For this problem it is possible to find out the stationary distributions, it turns out
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there are three of them:

X∞ ≡ 0,

X ′∞ ≡ 2,

X ′′∞ ≡ ∞.

On the other hand, it is unclear whether the system converges to any of these for a certain

starting distribution. Partial results are available:

Theorem 2.8 (Komlós et al.). Suppose we start the process with X0(i) ∼ Poisson(λ), i =

0, 1, . . . for some λ > 0.

• If λ < 0.999, the process converges to X∞ ≡ 0.

• If λ > 1.001, the process blows up to X ′′∞ ≡ ∞.

It is natural to conjecture the critical value to be λ = 1, but this is not yet proven.

Despite the neat results a natural question remains unanswered, namely whether some

exotic starting distribution can lead to a periodic or chaotic process or not.

In the next section we give an overview of the biological background providing the

general Bi-Markov processes we work with, followed by detailed discussion and statistical

investigation of the so called Poisson model. This is a joint work with my advisor Gábor

Tusnády and also with Balázs Ráth.

2.1 Basics of multifactorial inheritance

The concept of multifactorial inheritance goes back to Francis Galton, a contemporary of

Gregor Johann Mendel (see in Karlin [33]). Instead of the case investigated by Mendel,

where the appearance of a congenital malformation is controlled by a single gene, in multi-

factorial inheritance the number of genes involved is large or infinite. As a result their effect

is concentrated in a virtual quantity, the liability having standard normal distribution. See

Curnow, Smith [11] for an overview of multifactorial models. The joint distribution of the

liabilities of members of a family is also normal with covariances determined by the remove

degrees of relationship.

cov(X, Y ) =
h2

2d
,

where h is the heritability of the malformation and d is the degree of relationship. In

the simplest case of h = d = 1 the conditional probability that a first order relative

of a malformed person has the malformation is roughly
√
p, where p is the population
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incidence of the malformation. This approximation is due to A. W. F. Edwards [21]. The

multifactorial model was tested on Hungarian data by Czeizel and Tusnády [12] which work

was criticized by Kari Sankaranarayanan because the effect of selection was neglected. He

organized a group to solve the problem and some preliminary results were published by

members of the group [49] while Tusnády tested the new model on original data [52].

Unfortunately a question remained unsettled: the stability of the proposed model. Here

we offer a partial solution of the problem.

Let X and Y be the liabilities of the parents, then the liability of their child is

Z =
X + Y

2
+ U,

where U is a normal variable with expectation zero and variance 1
2
. The main observation of

Sankaranarayanan was that in the case of selection the bad genes causing the malformation

simply flow out from the population like the water from a bathtub. It is the mutation

which can supplant the bad genes. The effect in the model may be represented by changing

the expectation of U to some positive number to balance the effect of selection.

Besides genetic factors there are environmental effects modifying the liability so instead

of Z let us use L = Z + V where V is the environmental effect with appropriate variance.

Let us postulate that the appearance of the malformation is equivalent with the event

L > T, where T is the threshold. (The random variables X, Y, U, V are independent.)

The effect of selection may be represented in the model by a second threshold S > T

such that if L > S then there will be no descendant for the person having liability L. The

stability of the model means that starting with an arbitrary distribution on parents in

course of generations the distribution of the liability goes to a limit which is independent

of the original distribution. This is observed for computer simulations but we have no

theoretical proof. Instead we turn to the case of finitely many bad genes.

In this setting we assume that there is an infinite number of genes, but the mutations

are rare, thus the number of bad genes can be treated as a non-negative integer. This

concept was introduced by Kimura and Maruyama [35] and Kondrashov [37]. To avoid

halving genes we let any bad gene of the parents to be given to the child independently

with probability 1
2
. Both the mutation and the environmental effects can be represented

by a Poisson variable an appropriate parameter. L may be identified in this case with a

natural number coming partly from bad genes and partly from quantized environmental

effects with the same habit as bad genes. In the general case let p(L) be the probability

that a person with liability L has the malformation. If p(L) = 1 iff L ≥ T , 0 otherwise

the situation is the same as in the continuous case. We call this the discrete threshold

model. Here we also need to have mutation to avoid the bad genes from disappearing from
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the population. Stability is also evident by computational results. Still, we don’t have a

theoretical proof to verify it.

Let us change the way the malformation appears as suggested by Balázs Ráth by

choosing p(L) = 1 − ρL with some 0 < ρ < 1. We call this the Poisson model. In this

setting the question of stability turns to be solvable. It is also shown by Dawson [13]. It is

justifiable to consider other p(L) functions, for example see Crow, Kimura [10] comparing

the threshold function with linearly decreasing alternatives.

Let us give a hint on the complexity of the situation when investigating two relatives

at once. We say we are thinning a Poisson variable if we represent it with balls and kill

independently the balls with a certain probability. It is a well known fact that the thinning

of a Poisson variable results in a Poisson variable again. Let Z be a Poisson variable with

parameter λ and let it be thinned independently into random variables X1 and Y1 with

probabilities p and q accordingly. Let the random variables X2 and Y2 be Poisson with

parameters (1 − p)λ and (1 − q)λ and independent of the earlier random variables. The

variables

X = X1 +X2, Y = Y1 + Y2

may correspond to the liabilities of two relatives. Their joint distribution is somewhat

cumbersome:

P (X = x, Y = y) =
∞∑
z=0

Pois(z, λ)

[
z∑
i=0

Bin(z, p, i)Pois(x− i, (1− p)λ)

]

×

[
z∑
j=0

Bin(z, q, j)Pois(y − j, (1− q)λ)

]
.

but its generating function is easily found. This observation is the driving force in our

calculations on the conditional probabilities for pairs of relatives.

In Section 2.2 we present the Poisson model in detail, in Section 2.3 we prove the

stability theorem, in Section 2.4 we develop the conditional probabilities for the malfor-

mation in the relatives of an affected person. In Section 2.5 the theory is applied on the

Hungarian data, and in Section 2.6 the conclusions are drawn.

2.2 The working model

We consider a population with sexual reproduction, selection, synchronous generations

on a short time frame in the evolutionary sense. We assume all relevant loci have the

same effect in view of the birth defect, so the only thing we keep track of is the number of

mutant genes one has. To get the genetic information of offsprings, we need recombination,

mutation, and selection.
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During recombination we assume crossovers may happen, and there is a low number

of mutant genes, that is, each of them is inherited independently with probability 1/2. If

the two parents have x and y mutant genes, the child will receive a random number of

mutant genes from the Binom(x+ y, 1/2) distribution.

The child is affected by additional mutation, this is represented by adding an indepen-

dent Poisson(µ) random variable to the inherited mutant gene count.

Given the number of mutant genes the child has, we have to find out two things:

whether he/she is affected by the disorder and whether he/she is fertile (and viable). We

assume each mutant gene may cause the disorder to appear or the loss of fertility. There

is an ordering of the two symptoms, a gene causing the loss of fertility also causes the

disorder to appear. The probability of a single gene not causing the disorder is denoted

by ∆, and the probability of not inhibiting fertility is ρ. Clearly ρ > ∆. Once again, each

gene has a random effect on the individual in the following way:

• with probability ∆ it has no effect,

• with probability ρ − ∆ it causes the individual to be affected by the disorder, but

has no effect on fertility,

• with probability 1−ρ it causes the individual to be affected by the disorder and lose

fertility.

We need to easily refer to the combination of these operations. For a pair of distribution

of mutant genes (Pf , Pm) let us denote the female distribution of the next generation

by Tf (Pf , Pm). We use the analogous notation for the male counterpart. We vaguely

use T kf (Pf , Pm) for the female distribution after k generations (although we should use

Tf (Tf (Pf , Pm), Tm(Pf , Pm)) instead of T 2
f (Pf , Pm)).

2.3 Stationary genotype distribution

This section deals with the long-term behavior of the genotype distribution. It is rather

clear that if there is no selection, which has the role of filtering out the mutant genes,

then their number will grow unboundedly. Consequently, to have a chance of stationarity,

we need ρ < 1. We claim that in this case the distribution of mutant genes in the

population stabilizes over time. We assume there is a separate set of parameters for

females (µf , ρf ,∆f ) and males (µm, ρm,∆m). The model used by Dawson [13] does not

use sex dependent parameters, but includes a separate modifier gene that can alter the

parameters. We do not see biological evidence for µf and µm to differ but it does no harm
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to include it in our study, and we get a more general result. The credit for the main ideas

of this proof goes to Balázs Ráth.

Theorem 2.9. If ρf , ρm < 1 then for any pair Pf , Pm of initial distributions of mutant

genes, the distribution of T kf (Pf , Pm), T km(Pf , Pm) will converge in distribution to a pair of

limiting Poisson distributions with parameters

λf =
ρfρm(µm − µf ) + 2ρfµf

2− ρf − ρm
, λm =

ρfρm(µf − µm) + 2ρmµm
2− ρf − ρm

,

for females and males, respectively, when k →∞.

Proof. We work with generating functions. We say that P = (pi)
∞
i=0 is a probability dis-

tribution on N if pi ≥ 0 and
∑∞

i=0 pi = 1. Denote by P the set of probability distributions

on N. For P ∈ P and x ∈ [0, 1] let us define

GP (x) =
∞∑
i=0

pix
i.

The coefficients of the power series form a probability distribution, consequently GP (x)

is analytic on [0, 1]. The operations used in our model are easy to handle with generating

functions. We write out the equations for a daughter, we get the analogous equations for

a son by exchanging f and m in the indices.

Convolution of distributions are reflected as multiplication of the generating functions,

so adding up parental mutant genes translates to

GP ′(x) = GPf (x)GPm(x).

Plugging the value of the variable into a Binomial distribution with parameter 1/2

(also known as “thinning”) translates to changing the argument from x to (1 + x)/2. We

get

GP ′′(x) = GP ′

(
1 + x

2

)
.

Adding external mutation is another multiplication with the generating function of a

Poisson variable with parameter µf :

GP ′′′(x) = GP ′′(x)eµf (x−1).

During selection, we put weights on each p′′′i , then normalize to obtain a probability

distribution in the following fashion: the probability of having i mutant genes is p′′′i , and

the probability that a female with i mutant genes remains fertile is ρif , thus a female in the

community of fertile females will have i mutant genes with probability p′′′i ρ
i
f/
∑∞

j=0 p
′′′
j ρ

j
f .
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This operation is known as the “exponential tilting” of the distribution P ′′′. For generating

functions, the effect of selection can be computed the following way:

GP ′′′′(x) =
∞∑
i=0

p′′′i ρ
i
f∑∞

j=0 p
′′′
j ρ

j
f

xi =
GP ′′′(ρfx)

GP ′′′(ρf )
.

Composing the three transformations we get

GTf (Pf ,Pm)(x) =
GPf ((1 + ρfx)/2)GPm ((1 + ρfx)/2)

GPf ((1 + ρf )/2)GPm ((1 + ρf )/2)
eµfρf (x−1). (2.2)

We want to iterate T n times. Naturally we want to avoid writing down all these

complicated formulas. In order to see the structure of what we get, let us write down the

formula for T 2, but without arguments.

GT 2
f
(x) =

GTf ()()GTm()()

GTf ()()GTm()()
e... =

GPf ()GPm ()

GPf ()GPm ()
e...

GPf ()GPm ()

GPf ()GPm ()
e...

GPf ()GPm ()

GPf ()GPm ()
e...

GPf ()GPm ()

GPf ()GPm ()
e...
e.... (2.3)

From (2.2) we see that the denominator of GTf (Pf ,Pm) is constant in x and the constant

is the normalizing factor which guarantees that GP ′′′′(1) = 1. Rearranging (2.3) we end

up with a formula that is the product of four G()/G() terms (where the denominator

normalizes the numerator and the ratio takes value 1 for x = 1) and an exponential term.

After n iterations we get that GTnf
(x) is a product of the functions ĜTnf

(x) and En
f (x),

where ĜTnf
(x) is a product of 2n terms of form G()/G() and En

f (x) is an exponential term

(the generating function of some Poisson random variable).

Let us treat ĜTnf
(x) and En

f (x) separately.

We first show that ĜTnf
(x) → 1 for all x ∈ [0, 1] as k → ∞. If we put back the

arguments in one of the 2n terms of ĜTnf
(x), we see that it is of form

G(B(x))

G(B(1))
,

where B is an affine function, an n-fold composition of either x 7→ (1 + ρfx)/2 or x 7→
(1 +ρmx)/2, and the generating function G is either GPf or GPm . The product of all these

terms look like

G(B(x))

G(B(1))
· . . . · G(B(x))

G(B(1))
= exp

(
log

G(B(x))

G(B(1))
+ . . .+ log

G(B(x))

G(B(1))

)
, (2.4)

with G and B changing throughout the formula. Let us make sure the use of logarithms

is feasible. It is easy to see that B(x) > 0 for x ≥ 0. The generating function G is a

power series with non-negative (and at least one positive) coefficients, so G(B(x)) > 0 for

x ∈ [0, 1]. Now we have to estimate the terms of the form log(G(B(x))/G(B(1))). By the
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mean value theorem for every x ∈ [0, 1] there is a ξ ∈ [B(x), B(1)] ⊆ [1/2, (1 + ρ∗)/2] such

that

log
G(B(x))

G(B(1))
= logG(B(x))− logG(B(1)) = (B(x)−B(1))(logG)′(ξ)

We denote ρ∗ = max(ρf , ρm) < 1. The coefficient of x in B(x) will be at most (ρ∗/2)n.

Thus for any x ∈ [0, 1] we get

|B(x)−B(1)| ≤
(ρ∗

2

)n
.

The function G is continuously differentiable and bounded away from 0 on the interval

ξ ∈ [B(x), B(1)] ⊆ [1/2, (1 + ρ∗)/2], consequently the derivative of the logarithm can be

bounded in absolute value by some C. In the end we get∣∣∣∣log
G(B(x))

G(B(1))

∣∣∣∣ < C
(ρ∗

2

)n
.

Adding up 2n of such terms gives the bound∣∣∣∣log
G(B(x))

G(B(1))
+ . . .+ log

G(B(x))

G(B(1))

∣∣∣∣ ≤ Cρn∗ .

This tends to 0 for all x ∈ [0, 1], thus the product on the left-hand side of (2.4) converges

to 1 as n→∞. Observe that the exponential term in (2.2) does not depend on the initial

distributions Pf , Pm. Thus we have just shown that the only part depending on the initial

distributions vanishes. Consequently the convergence and the potential limit does not

depend on the initial distributions.

It is now enough to show a pair of distributions satisfying

(Pf , Pm) = (Tf (Pf , Pm), Tf (Pf , Pm)),

as the previous reasoning ensures that the trivial convergence of this case implies conver-

gence for any initial generating functions to this fixed point. We search among Poisson

distributions because this family is closed for all the transformations we use. The pair

(λf , λm) is invariant exactly when

λf =

(
λf + λm

2
+ µf

)
ρf , λm =

(
λf + λm

2
+ µm

)
ρm.

Taking the average of the two equations results in a simple expression for (λf +λm)/2,

plugging it back gives us the parameters stated in the theorem.

To conclude we use the fact that the convergence of a sequence of generating functions

to a generating function on [0, 1] implies the convergence of the corresponding probability

distributions (see e.g. Mukherjea, Rao and Suen [45]).
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We should note that the proof strongly relies on the specific choice of selection which we

can conveniently handle using generating functions. As we mentioned in the introduction,

it makes sense to consider different functions determining the risk based on the mutant gene

count. However, it is unclear how one should modify the proof to resolve the alternative

cases.

2.4 Theoretical disorder probabilities

From the previous section we learn that it makes sense to assume the population to be in

the stationary state. It is easy to check that the number of mutant genes a newborn has

follows a Poisson distribution with the following parameters depending on the gender:

λf + λm
2

+ µf =
λf
ρf
,

λf + λm
2

+ µm =
λm
ρm

.

Consequently his/her probability for being healthy is

pf = exp

(
λf

∆f − 1

ρf

)
, pm = exp

(
λm

∆m − 1

ρm

)
.

Similarly, the probability of being fertile is

p̃f = exp

(
λf
ρf − 1

ρf

)
, p̃m = exp

(
λm

ρm − 1

ρm

)
.

However, if we look at a family tree at once, we see a complex multidimensional joint dis-

tribution. We want to answer simple questions like “What is the (conditional) probability

of an aunt of a malformed child being affected”.

We claim that we can get a closed form expression on any reasonable conditional

probabilities like the one above. The resulting formulas often become enormous, but there

is a way to derive them with reasonable effort.

We would like a general iterative computational scheme that can be used for most

cases. The idea is to draw a graph of the family tree, transform it to simpler graphs while

building the formula for the probability.

We include the possible dependence on the gender of the patient. Therefore the pa-

rameters we have are

µf , µm, ρf , ρm,∆f ,∆m.

The parameters of the stationary distributions are

λf =
ρfρm(µm − µf ) + 2ρfµf

2− ρf − ρm
, λm =

ρfρm(µf − µm) + 2ρmµm
2− ρf − ρm

.

To reduce the number of formulas, from now on we use x, y, . . . for one gender or

another, thus µx or λy is the parameter corresponding to the appropriate gender. In

addition we use x′ for the gender opposite to x.
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2.4.1 Representing graphs

First, let us visualize the situation. We may draw a family tree with some additional

information.

Figure 2.1: Healthy boy and aunt (or similar)

We use Figure 2.1 as an example. Suppose x = m, y = m, z = f for a moment.

The circles in the graph represent members or couples of the family. In this case B

is the male patient we start with, A is the mother, C is the father. D represents the

paternal grandparents together. We do not separate them as we use only the joint genetic

information of them. The last member E is an aunt.

The genetic information moves in the following way. Each line represents a parental

relation, so each gene is inherited downwards independently with probability 1/2. The

values above the circles show where additional mutant genes enter the system. We always

mean a Poisson random variable with the parameter being the value indicated. These are

obviously µu for most people, and λu or λf + λm for the people or couples we start with.

The event we want to investigate is coded in the values below the circles. They show

a per-gene probability for mutant genes that the actual person complies with the event.

In the figure above we have ∆u in two positions which means we want the patient and

the aunt (or uncle) to be healthy. The ρy under C is an implied restriction, as we need

the father (or mother) to be fertile for the graph to be valid. Some places have no value

indicated, we have no restriction there, we may also write 1 to these places.

This way we can only express events requiring some to be healthy, some to be fertile,

but these are the one that are easy to directly compute. By basic inclusion-exclusion

formulas we can also handle events about some being affected or infertile. To compute

conditional probabilities we simply need to divide two of such probabilities.

Now let us get into computational details to work through our plan.

2.4.2 Processing graphs

We can handle the simplest graph possible:
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Figure 2.2: Basic graph

The probability of the event described by this basic graph is

∞∑
i=0

ηi

i!
e−ηαi = exp(η(α− 1)).

We introduce a few graph operations so we can transform complex graphs into simpler

ones. Observe that if a final descendant receives mutant genes from multiple sources, they

pose independent threats, so we can split the graph as pictured below.

Figure 2.3: Splitting a graph

The other operation we use is to merge a child to the parent. Consider the following

setting:

Figure 2.4: Parent and child

We condition on the number of mutant genes the parent has, suppose it is c. Then the

distribution of mutant genes the child inherits follows a Binom(c, 1/2) distribution. So

the probability that the child behaves according to the event is

c∑
i=0

(
c

i

)(
1

2

)c
αi =

(
1 + α

2

)c
.

This is an exponential term in c, so we do not change the overall probability of the event

if we omit the child but multiply the risk factor of the parent by (α + 1)/2.

It is easy to see that any acyclic family tree can be reduced to contain only a few copies

of the simplest one-node graph.
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Figure 2.5: Merging a child

2.4.3 Siblings

Let us start with the simplest case, computing conditional probabilities for first order

relatives. We want to find out the conditional probability of a sibling of a malformed child

being affected. Figure 2.6 shows the graph for the sibling.

Figure 2.6: Healthy patient and sibling

Let us use the notation scheme pĀC , this stands for the probability of A being af-

fected by the risk and C not (and we don’t count on others). This means the conditional

probability qS we need is

qS =
pĀC̄
pĀ

.

Using inclusion-exclusion formulas we have

pĀC̄ = 1− pA − pC + pAC ,

pĀ = 1− pA.

The method in the previous section allows us to compute these probabilities. When

computing pA, we replace the risk of C by 1. The graph decomposition is shown in Figure

2.7. By symmetry we have pC = pA. We show the graph decomposition for computing

pAC in Figure 2.8.

We do not aim for the simplest expressions, we rather leave it in a form that is easier

to check.
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Figure 2.7: Graph decomposition to compute pA

Figure 2.8: Graph decomposition to compute pAC

pA = exp

((
µx +

λf + λm
2

)
(∆x − 1)

)
,

pC = exp

((
µy +

λf + λm
2

)
(∆y − 1)

)
,

pAC = exp

(
µx(∆x − 1) + µy(∆y − 1) +

λm + λf
4

((∆x + 1)(∆y + 1)− 4)

)
.

In case of complete selection and symmetric gender roles, i.e.

∆m = ∆f = ρm = ρf = ρ, λf = λm = λ, and µm = µf = µ,

the conditional probability qS is

qS = 2− 1− e−t

1− e−µ
,

where

t = 2µ(1− 1

4
ρ(1− ρ)),

and ρ = λ
λ+µ

. Surprisingly qs depends on ρ through the term ρ(1 − ρ). In this case the

population prevalence simplifies to

pĀ = 1− exp((λ+ µ)(ρ− 1)) = 1− exp(λ− (λ+ µ)) = 1− exp(−µ).

thus ρ is a free parameter and qS is a symmetric function of ρ regarding the swap ρ̃ = 1−ρ.

We are curious whether there is a direct explanation for this symmetry. When µ is small

and ρ = 1
2
, then λ = µ and a bad gene is rare. An affected child gets a bad gene fifty-fifty

either from mutation or from one of his/her parents. In the second case the sibling gets the

bad gene from the affected parent with half probability and the bad gene is expressed again

with probability half. Accordingly qS is close to 1
8
. We shall refer to this parametrization

as the standard model.
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2.4.4 Parent

Next we calculate the conditional probability for a parent being affected, which is also

fairly simple. See Figure 2.9 for the describing graph. The only novelty is the ∆y/ρy risk

of the parent. It is easy to see that this is the risk of not being affected by the disorder

conditioned on being fertile.

Figure 2.9: Healthy patient and parent

qP =
pB̄C̄
pB̄

=
1− pB − pC + pBC

1− pB

pB = exp

((
µx +

λf + λm
2

)
(∆x − 1)

)
,

pC = exp

(
λy

(
∆y

ρy
− 1

))
,

pBC = exp

((
µx +

λy′

2

)
(∆x − 1) + λy

(
∆y

ρy

(
∆x + 1

2

)
− 1

))
.

In the standard model, when ρf = ρm = ∆f = ∆m = 1/2 and µf = µm is small, we

get qP = 0. This is rather clear because this special case implies complete selection.

2.4.5 Grandparent

Let us move on to higher order relatives, starting with grandparents. Figure 2.10 shows

the actual graph to be processed. The conditional probability can be expressed as

Figure 2.10: Healthy patient and grandparent
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qG =
pB̄CD̄
pB̄C

=
pC − pBC − pCD + pBCD

pC − pBC

pC = exp

((
µy +

λf + λm
2

)
(ρy − 1)

)
,

pBC = exp

((
µx +

λy′

2

)
(∆x − 1) +

(
µy +

λf + λm
2

)(
ρy

∆x + 1

2
− 1

))
,

pCD = exp

((
µy +

λz′

2

)
(ρy − 1) + λz

(
∆z

ρz

(
ρy + 1

2

)
− 1

))
,

pBCD = exp

((
µx +

λy′

2

)
(∆x − 1) +

(
µy +

λz′

2

)(
ρy

∆x + 1

2
− 1

)
+ λz

(
∆z

ρz

(
ρy

∆x+1
2

+ 1

2

)
− 1

))
.

In the standard model we get qG = 0 as we expect because of the complete selection.

2.4.6 Aunt and uncle

Let us turn to investigating aunts and uncles. We use Figure 2.1 for the calculation. The

conditional probability can be expressed as

qA =
pB̄CĒ
pB̄C

=
pC − pBC − pCE + pBCE

pC − pBC
.

We can compute the occurring probabilities as before. Without going into details, we get

pC = exp

((
µy +

λf + λm
2

)
(ρy − 1)

)
,

pBC = exp

((
λy′

2
+ µx

)
(∆x − 1) +

(
µy +

λf + λm
2

)(
ρy

∆x + 1

2
− 1

))
,

pCE = exp

(
µy(ρy − 1) + µz(∆z − 1) + (λf + λm)

(
(ρy + 1)(∆z + 1)

4
− 1

))
,

pBCE = exp

(
µz(∆z − 1) +

(
µx +

λy′

2

)
(∆x − 1) + µy

(
ρy

∆x + 1

2
− 1

)
+

+
λf + λm

4

((
ρy

∆x + 1

2
+ 1

)
(∆z + 1)− 4

))
.

Plugging these back gives us the conditional probability we were looking for.

In the standard model the number of halving factors is 5:

– the affected child might get the bad gene by mutation

– or by the parent out of link to aunt-uncle
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– the parent in the link to aunt-uncle might get the bad gene by mutation

– the grandparents need not to pass it to another child

– who needs not to express the malformation.

We get qA = 1/32 as well by using the expressions above for the standard model.

2.4.7 Cousin

To compute the analogous conditional probability for cousins, we will use Figure 2.11

below.

Figure 2.11: Healthy patient and cousin

Using the same method, we want to compute

qC =
pB̄CEF̄
pB̄CE

=
pCE − pBCE − pCEF + pBCEF

pCE − pBCE
= 1− pCEF − pBCEF

pCE − pBCE
.

For the individual probabilities in this setting we get

pCE = exp

(
µy(ρy − 1) + µz(ρz − 1) +

λf + λm
4

((ρy + 1)(ρz + 1)− 4)

)
,

pBCE = exp

((
µx +

λy′

2

)
(∆x − 1) + µz(ρz − 1) + µy

(
ρy

∆x + 1

2
− 1

)
+

+
λm + λf

4

((
ρy

∆x + 1

2
+ 1

)
(ρz + 1)− 4

))
,

pCEF = exp

((
µv +

λz′

2

)
(∆v − 1) + µy(ρy − 1) + µz

(
ρz

∆v + 1

2
− 1

)
+

+
λm + λf

4

((
ρz

∆v + 1

2
+ 1

)
(ρy + 1)− 4

))
,

pBCEF = exp

((
µx +

λy′

2

)
(∆x − 1) +

(
µv +

λz′

2

)
(∆v − 1)+

+ µy

(
ρy

∆x + 1

2
− 1

)
+ µz

(
ρz

∆v + 1

2
− 1

)
+

+
λf + λm

4

((
ρy

∆x + 1

2
+ 1

)(
ρz

∆v + 1

2
+ 1

)
− 4

))
.
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These are rather cumbersome formulas, but in the standard model, we get qC = 1/124.

At first this is a bit surprising, because by counting the number of halving factors as before,

we get 1/27 = 1/128. We should note that checking a cousin for the disorder implies he is

already born, that is, his parents are fertile. Conditioning on this accounts for a division

by 31/32 which brings us to the correct value.

2.5 Validation of the model

It is an important milestone to have a model which we can handle, we still have to check

how well does it follow biological principles and how does it fit the population. Let us

recall the notations introduced in Section 2.4:

p = P (subject is affected),

qS = P (sibling is affected|subject is affected).

The initial requirement for a model of inheritance is to have high conditional proba-

bilities for first order relatives, in other words qS � p. To test this, we will try to choose

the parameters to increase qS as much as possible within the given constraints.

Another guideline we use is a fundamental approximation on multifactorial disorders

given by the Edwards formula [21] which states that qS ≈
√
p.

We don’t want to go into theoretical details, let us just present Figure 2.12 showing

the relation between log p and log qS for µ ∈ [5 · 10−5, 3] and ∆ ∈ [0.1, 1). On the left

side, we assume complete selection, that is, ρ = ∆, on the right side we consider a partial

selection with ρ = (1 + ∆)/2.

The upper diagonal line shows where the Edwards formula is precisely satisfied, the

lower one corresponds to probabilities of the Gaussian model used by Czeizel and Tusnády

in [12]. We prefer parameters where the disorder is mainly inherited, that is, λ� µ. Thus

we split the domain the model sweeps through into three regions, the values we can reach

while λ ≥ 10µ, or just 10µ > λ ≥ µ, or only µ ≥ λ (top to bottom). Let us note that

in the case of complete selection the bottom boundary of the region of the Poisson model

corresponds to the standard model. Although the model does not satisfy the formula in

general, we may choose the parameters to do so.

Here is another way of comparing with the Gaussian model. Let the population fre-

quency of a malformation be 0.00071 for males and 0.00317 for females, suppose there is

no selection. The following table shows the conditional probabilities of the malformation

in the first, second and third degree relatives in the Gaussian model. The rows correspond
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Figure 2.12: Model probabilities and the Edwards formula

to different genders of the malformed child, columns represent the degree of relationship

and the gender of corresponding member of the family.

I I II II III III

M F M F M F

M 0.0393 0.1149 0.0076 0.0276 0.0024 0.0195

F 0.0232 0.0749 0.0055 0.0204 0.0014 0.0087

Table 2.1: Conditional probabilities in the Gaussian model without selection

It is a remarkable property of the multifactorial threshold model that a relative with the

gender of larger frequency of a malformed child with the gender of smaller frequency has

the maximal conditional probability. The reason for the property is that the malformed

child with smaller frequency has larger liability shifting the liability of his family upwards.

The relatives with gender of larger frequency is evaluated with a smaller threshold which

results in the mentioned property. The following table gives the conditional probabilities

for the case with complete selection for the Gaussian model.

I I II II III III

M F M F M F

M 0.0365 0.1025 0.0085 0.0255 0.0032 0.0113

F 0.0242 0.0739 0.0063 0.0234 0.0020 0.0088

Table 2.2: Conditional probabilities in the Gaussian model with complete selection

We compare these values with those coming from the Poisson model. We assume µf =
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µm, and use the remaining degree of freedom to get the highest conditional probabilities

as mentioned in the beginning of this section. Having no selection means ρf = ρm = 1 but

in this case we cannot apply Theorem 2.9. We rather choose ρf = ρm = 1 − ε for some

small ε > 0 to allow only negligible selection, but stay within the conditions of Theorem

2.9.

I I II II III III

M F M F M F

M 0.1124 0.5015 0.0566 0.2523 0.1475 0.1722

F 0.1123 0.5012 0.0565 0.2521 0.1473 0.1721

Table 2.3: Conditional probabilities in the Poisson model with negligible selection

With complete selection:

I I II II III III

M F M F M F

M 0.0452 0.2017 0.0135 0.0603 0.0342 0.0418

F 0.0452 0.2015 0.0135 0.0602 0.0342 0.0418

Table 2.4: Conditional probabilities in the Poisson model with complete selection

The reassuring fact we see is that we can set the conditional probabilities even higher

than in the Gaussian model while leaving population probabilities unchanged.

Figure 2.13: Model family

Next, we perform a Monte Carlo simulation on a model family given in Figure 2.13.

We fix that A2, A4, A6, A8, B6 are women, A1, A3, A5, A7, B3 are men. The following

numbers in Table 2.5 are probabilities conditioned on C5 having the malformation. We

generated a large number of families starting from A1-A8 and only selected those where

C5 was born and had the malformation. This explains the zeros in the first lines as they

are all parents and consequently they are healthy. This does not hold for B1 as we allow

him/her to be infertile thus C1 might not be born.
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Gender of

relative index A1 A2 A3 A4 A5 A6 A7 A8

M M 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

M F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

F M 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

F F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

B1 B2 B3 B4 B5 B6 B7 B8

M M 0.00100 0.00071 0.00000 0.01853 0.00752 0.00000 0.00077 0.00077

M F 0.00079 0.00064 0.00000 0.01890 0.00887 0.00000 0.00069 0.00068

F M 0.00295 0.00305 0.00000 0.08952 0.03948 0.00000 0.00288 0.00293

F F 0.00334 0.00290 0.00000 0.08458 0.03906 0.00000 0.00306 0.00310

C1 C2 C3 C4 C5 C6 C7 C8

M M 0.00701 0.00684 0.00813 0.04489 1.00000 0.04284 0.00221 0.00290

M F 0.00706 0.00657 0.00717 0.04408 0.00000 0.04392 0.00310 0.00312

F M 0.03072 0.03130 0.03076 0.18805 0.00000 0.19658 0.01346 0.01445

F F 0.02944 0.02999 0.02988 0.19319 1.00000 0.19074 0.01485 0.01411

Table 2.5: Conditional probabilities in the Poisson model with complete selection

The gender of the affected child has seemingly no effect beyond randomness. One

explanation for this phenomena is that in case of rare malformations the only effect that

the affected child might cause is that he/she has a bad gene which is independent of

gender differences. Using this setup also allows us to numerically compute more elaborate

conditional and joint probabilities.

Another way to qualify the power of the Poisson model is to check its goodness-of-fit

on the Hungarian data. In Table 2.6 we show the Poisson model fitted to 7 different data

sets. The population data were gathered and published by Czeizel and Tusnády [12].

In Table 2.7 we present the goodness-of-fit values for the same data. We calculate the

weighted average of the divergences for each relative. From another viewpoint, this is the

normalized log-likelihood loss when changing real frequencies to the predicted probabilities.
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disorder
GOF for GOF for

all relatives first order relatives

ASB 0.012189 0.000615

CLP 0.005341 0.008989

CHPS 0.007234 0.007099

VSD 0.005122 0.003212

CDH-BB 0.031767 0.002309

CDH-CB 0.050819 0.007456

STEV 0.007865 0.007432

Table 2.7: Goodness-of-fit of the Poisson model to Hungarian data

Finally let us present the parameter values for the best fit in Table 2.8.

disorder µm µf ρm ρf ∆m ∆f λm λf

ASB 0.015 0.026 0.018 0.010 0.018 0.010 0.00027 0.00026

CLP 0.012 0.0075 0.019 0.143 5.0e-14 0.085 0.00024 0.0012

CHPS 0.020 0.006 0.069 0.078 0.061 0.00052 0.0015 0.00052

VSD 0.016 0.013 0.0040 0.023 1.7e-17 1.3e-17 6.2e-5 0.00031

CDH-BB 0.036 0.175 0.028 0.142 3.4e-32 0.105 0.0014 0.027

CDH-CB 0.030 0.237 0.010 0.137 6.5e-16 0.102 0.00050 0.035

STEV 0.015 0.0073 0.091 0.048 0.047 1.2e-14 0.0015 0.00039

Table 2.8: Parameters of the Poisson model for Hungarian data

2.6 Conclusion

The form of selection investigated in this chapter is fortunate and ensures stability. The

goodness-of-fit to population data is acceptable, the only problem is the extraordinarily

small values for the parameter λ. This means that the number of bad genes is usually

zero, and the appearance of a single bad gene causes the malformation or selection. Still,

the low λ does not necessarily mean that the number of genes involved is small. As we

mentioned in the introduction, we qualify our solution partial. It is a first acceptable

solution for the problem resulting in a sound and practically applicable model. Still, the

stability of the models with threshold remains open.

In a certain way the Poisson setup is richer then the Gaussian one as the expression

of the malformation is randomized. The situation of this model is close to dominant
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Mendelian inheritance with restricted expression. If the probability of the expression de-

pends on the gender then the situation is rather complex. In the standard model the

conditional probabilities resemble the formulas of Gaussian correlations. However, when

allowing gender differences in the parameters the Poisson model becomes richer: condi-

tional probabilities (of a relative being affected when the child is affected) show stronger

gender dependence in the Poisson model than in the Gaussian one. Now we are facing

the question, whether the Poisson model incorporated with environmental effects offer a

substantially better goodness-of-fit than the Gaussian one.
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Chapter 3

Markov chain mixing time estimates

In the previous chapter we have studied the convergence of a special stochastic process.

In other cases, there are well know answers to these problems. For example, we know that

an irreducible aperiodic Markov chain on a finite state space approaches its stationary

distribution. Still, there is another fundamental question about the long term behavior

of stochastic processes. It is natural to ask for the speed the distribution converges. This

is especially important for applications, where the Markov chain is allowed to run for a

limited number of time steps. One possibility to quantify this speed is by the introduction

of mixing time. Let us define this quantity together with the concepts it relies on.

We work with discrete time Markov chains on a finite state space X which has size

n = |X |. For the set of probability distributions on the state space X we use the notation

P(X ).

We need a metric to measure the distance of probability distributions. One of the

widely used options is the total variation norm defined as follows:

Definition 3.1. Given a signed measure ν on X , the total variation norm is defined as

‖ν‖TV = max
A⊆X
|ν(A)|.

Alternatively, one may use an L2 distance or the divergence for comparison, but the

investigation of these options is out of the scope of this thesis.

Now let us define the core notion of this chapter.

Definition 3.2. For a Markov chain with stationary distribution π and transition matrix

P = (pij), with pij denoting the probability of moving from state i to state j, we define

the mixing time of the chain as

tmix = tmix(P, ε) = max
σ∈P(X )

min
{
k : ‖σP k − π‖TV ≤ ε

}
.
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Note that this quantity might be infinite. We might omit some of the arguments of tmix

when they are not important or when they are known from the context.

For a survey on alternative metrics see Lovász, Winkler [41]. Mixing time is an im-

portant quantity directly related to the performance of numerous applications. In Markov

chain Monte Carlo simulations mixing time can be interpreted as the time needed to

generate a sample, see Metropolis et al. [42], Hastings [28] and Jerrum [30].

It turns out that running a local averaging algorithm is the same as following the

evolution of the distribution of a certain Markov chain. For details see Olshevsky, Tsitsiklis

[47], [48] or Boyd et al. [7]. Again, the time needed to get within a certain neighborhood

of a common value is quantified by the mixing time. Motivated by these applications, the

estimation of mixing time is in the center of interest.

A remarkable property of certain Markov chains is reversibility which often makes these

approximations easier, see e.g. Kelly [34].

Definition 3.3. A Markov chain is reversible if starting from the stationary distribution π,

the probability of the consecutive pair (i, j) is the same as the probability of the consecutive

pair (j, i). Formally:

πipij = πjpji ∀i, j.

The necessity of the separation of reversible and non-reversible Markov chains is widely

recognized in literature. Often it is easier to prove useful properties for reversible chains,

and there are tighter general bounds on mixing time for them. The reason to turn to

non-reversible chains is the fact that they may deliver much faster mixing than a similar

reversible chain.

As we mentioned in the beginning, we want quantifiable bounds for the mixing time.

The definition is quite complicated for direct approximation, but fortunately there are

multiple parameters that are more accessible and can be used to bound the mixing time.

Probably the most popular of these is the spectral gap.

Definition 3.4. Let 1 = λ1, λ2, . . . , λn be the eigenvalues of the transition matrix P .

Then the spectral gap of a Markov chain is defined by

γP = 1−max
i≥2
{|λi|)}.

Most of the times we simply write γ when P is obvious from the context.

Not surprisingly the results differ for reversible and non-reversible chains. From Levin,

Peres, Wilmer [38] and Diaconis and Saloff-Coste [17] we learn the following bounds for

the mixing time:
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Theorem 3.5. For an irreducible, aperiodic Markov chain we have(
1

γ
− 1

)
log

(
1

2ε

)
≤ tmix(P, ε)

Moreover, if the chain is reversible, the following bound holds as well:

tmix(P, ε) ≤ 1

γ
log

(
1

επ∗

)
,

where π∗ = mini πi.

For reversible chains, we have a rather tight bound. Apart from constants, the ratio

of the upper and lower bound is log 1/π∗. If the stationary distribution is uniform, this is

just a log n factor.

To shed light on the difference between reversible and non-reversible chains in the

preceding theorem let us quote a result on total variation distances from Montenegro and

Tetali [44]:

Theorem 3.6. With the notation d(n) = max
σ∈P(X )

‖σP n − π‖TV we have the following two

inequalities:

For irreducible, aperiodic, reversible chains:

1

2
(1− γ)n ≤ d(n) ≤ 1

2
(1− γ)n

√
1− π∗
π∗

For irreducible, aperiodic, non-reversible chains:

1

2
(1− γ)n ≤ d(n) ≤ 1

2
(1− γPP ∗)n/2

√
1− π∗
π∗

The upper bound for non-reversible chains is due to Fill, Allen [23] and it uses the

matrix PP ∗. It is possible to have γPP ∗ = 0. That means we do not expect a strong

general spectral upper bound on mixing time for non-reversible chains.

There are other tools that also work well for non-reversible chains, the one we heavily

rely on is using the conductance of a Markov chain introduced by Jerrum and Sinclair [31].

This is a quantity somehow measuring the worst bottleneck of the chain.

Definition 3.7. The conductance of a Markov chain is

Φ = min
∅6=S(X

Φ(S) = min
∅6=S(X

Q(S, SC)

π(S)π(SC)
= min
∅6=S(X

∑
i∈S,j∈Sc πipij

π(S)π(SC)
,
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where SC = X \ S, the complement of the set S. This quantity is strongly related

to mixing times. This neat idea has been evolving since into different refined concepts as

average conductance (see Lovász, Kannan [39]), and blocking conductance (see Kannan,

Lovász, Montenegro [32]), etc. The simplest universal bound is the following, see Borgs

[4] for a proof.

Proposition 3.8. For any discrete time Markov chain we have the bound

c

Φ
≤ tmix.

The conductance can also be used to provide an upper bound on the mixing time.

However, we need some additional condition for the Markov chain. The classical result is

due to Jerrum and Sinclair [50]:

Theorem 3.9. For an aperiodic, irreducible, reversible Markov chain the following bounds

for mixing time holds:

c1
1

Φ
≤ tmix ≤ c2

1

Φ2
log

(
1

π∗

)
.

Let us also cite the version of Lovász and Simonovits [40]. This theorem does not

require the reversibility of the chain but assumes that it is lazy. A Markov chain is lazy if

pii ≥ 1/2 for all i:

Theorem 3.10. For an aperiodic, irreducible, lazy Markov chain the following bounds for

mixing time holds:

c1
1

Φ
≤ tmix ≤ c2

1

Φ2
log

(
1

π∗

)
.

The stationary distribution is uniform for all the Markov chains we work with, so the

last logarithmic factor simplifies to log n.

There is a square factor between the lower and upper bounds so we will need additional

tools whenever we look for the exact magnitude of the mixing time.

Besides estimating the mixing time of a certain Markov chain, we might aim for im-

proving the algorithms mentioned in the beginning by modifying the Markov chain such

that the mixing time decreases. We consider only the case when the stationary distribu-

tion is uniform. For the transition matrix this translates to the condition of being doubly

stochastic.

As a starting point, let us review Example 6.6. of the survey by Montenegro and Tetali

[44]. We see two quite similar Markov chains on 2n nodes in Figure 3.1. Both the chains

35



stay put with probability 1/2, other transition probabilities are indicated. On the left

side, the state of the chain rotates around the cycles, on the right side, we see a symmetric

random walk. This change results in rather different mixing times, cn for the left chain

and cn2 for the right one.

Figure 3.1: Non-reversible and reversible chains on the double cycle

We want to do something similar to speed up other Markov chains. We change tran-

sition probabilities but not the allowed transitions. For this purpose, let us define the

connectivity graph in the following way:

Definition 3.11. The connectivity graph of a Markov chain is a graph on the states of

the Markov chain. We connect nodes i 6= j if either pij > 0 or pji > 0.

We shall also refer to this graph loosely as the topology of the Markov chain.

While not completely solving the problem, there are reassuring results on finding the

fastest mixing reversible chains with fixed connectivity graph, see Boyd et al. [6], [5].

They can formulate this task as a semi-definite programming (SDP) problem, thus it is

possible to determine the fastest reversible chain as long as there is a sufficiently fast SDP

solver available.

Unfortunately there is no such result for non-reversible chains. Theorem 3.13 con-

tributes to this topic by clarifying the situation for specific connectivity graphs.

One of the central question of this chapter is comparing the best reversible and non-

reversible chains for a fixed connectivity graph. Although we do not know the amount of

speedup in general, at least we have a theoretical limit, see Chen, Lovász and Pak [9] for

further thoughts.

Proposition 3.12. For some fixed connectivity graph let P and P̃ be the transition ma-

trices of the best reversible and non-reversible chains, respectively. Then for the mixing

times we have

tmix(P ) ≤ ct2mix(P̃ ) log n.
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Proof. Let us define P ′ = (P̃ + P̃ T )/2. It is easy to see that P ′ is the transition matrix of a

reversible Markov chain with the same connectivity graph (here we use that the stationary

distribution is uniform). Moreover, observe that ΦP ′(S) = ΦP̃ (S) for any S ⊂ X thus

ΦP ′ = ΦP̃ . Using Theorem 3.10 this implies

tmix(P ′) ≤ c1
1

Φ2
P ′

log n = c1
1

Φ2
P̃

log n ≤ c2t
2
mix(P̃ ) log n.

The matrix P ′ might not be the best choice for a reversible transition matrix, but substi-

tuting it with a better P just further decreases the left hand side.

To increase our freedom, we might allow certain changes in the connectivity graph as

well. To demonstrate the possibilities, let us cite a concept by Diaconis, Holmes, Neal [16],

optimized by Gade and Overton [24] and extended by Chen, Lovász and Pak [9]. This is a

method to decrease the mixing time of a reversible chain up to its square root by modifying

it to a non-reversible one. Here the topology of the chain changes as every node is split

into multiple copies. Transition probabilities are chosen such that the marginal behaves

like the original chain, but we achieve faster mixing on the new graph. The method is

called lifting. If we look at Figure 3.1 from a different aspect, we may view the Markov

chain on the left as a lifting of a symmetric random walk on a cycle.

Although this is a powerful example to show what one can achieve, in most cases the

limit of how much speedup is possible is not clear. Next, in Section 3.1 we show what

we can do in a specific case by relaxing the reversibility condition but not changing the

connectivity graph. In Section 3.2 we keep the states of the Markov chain but allow a low

number of new transitions to be introduced and we investigate the effect on the mixing

time. In Section 3.3 we discuss some future research questions.

3.1 Relaxing the reversibility condition

We restrict the connectivity graph to a cycle, and allow arbitrary non-reversible transition

probabilities such that the uniform distribution is invariant. Then there is a lower bound

on the mixing time which has the same order of magnitude as the best lower bound for

reversible chains.

For convenience, let us number the nodes according to the ordering on the cycle. We

will interpret these numbers mod n.

We are now ready to state the main result of this section:

Theorem 3.13. Consider a Markov chain on a cycle with n nodes having a doubly stochas-

tic transition matrix P . Then, with some global constant C > 0 we have

tmix(P, 1/8) ≥ Cn2.
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This has also been published by the author [25]. Note that our theorem covers all

Markov chains, even non-reversible ones. Our work goes back to the basics. We search

for the exact limit of what can be achieved by allowing a non-reversible chain for a given

topology, in our case a cycle. It is known that the magnitude of the best mixing time of a

reversible chain on a cycle scales with n2 (we will present a proof, see Lemma 3.24). Our

theorem implies that relaxing the reversibility condition does not help with this topology.

The claim of our work is simple to state, however, we did not succeed in proving using

conventional methods. We had to search further and use a unique approach, presented

in this section. As a result, some interesting properties of these Markov chains arise as a

by-product.

The rest of the section is structured in the following way. In Subsection 3.1.1 we prepare

the proof and split it into two parts. We have to work on them separately, Subsections

3.1.2 and 3.1.3 deal with these parts.

3.1.1 Preparation for the proof

To set up, let us collect some simple observations. First, let us note that in our case of

finite state space

‖µ− σ‖TV =
1

2

∑
x∈X

|µ(x)− σ(x)| = 1

2
‖µ− σ‖1.

We should point it out that the TV distance is defined for measures, l1 is for (real) vectors.

In our case we can interpret measures as real vectors, so that this equation makes sense.

This means we do not need to use the TV distance but can work with the l1 norm instead.

With this change we have to find when the l1 distance decreases below 1/4 to determine

the appropriate mixing time.

Second, let us prove a lemma on the structure of the transition matrix.

Lemma 3.14. The doubly stochastic transition matrix P of a Markov chain on a cycle

can be decomposed as P = Q+ rR, where Q is the transition matrix of a reversible chain

on a cycle, and R is 

1 −1

−1 1

−1
. . .

. . .

1

1 −1


.
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Proof. Let us start with

P =
P + P T

2
+
P − P T

2
= A+B.

The choice Q = A clearly satisfies the conditions we have on Q. It is easy to see that

B is antisymmetric, and all row and column sums are 0. Set r = B12 = −B21. Then

B23 = −B32 = r required by the second row and column sum to be zero. Repeat this to

get B = rR.

For convenience, we introduce simplified indices for the elements of Q we use often:

qi = Qi−1,i = Qi,i−1.

The presence of the rR term has the heuristic effect that the chain is more likely to

travel in one direction than the other. This is some sort of rotation, which will play a

crucial role in our proof.

Reversing the numbering of the nodes swaps the sign of r, so without loss of generality,

we may assume r ≥ 0 Let M be the set of doubly stochastic transition matrices of a

Markov chain on a cycle. Let M0 ⊂M be the subset of reversible ones.

Third, let us provide a tool to simplify further discussions:

Lemma 3.15. Let us choose any dense subset N of M, some ε > 1/8 and K. Then

∀P ∈ N tmix(P, ε) ≥ K =⇒ ∀P ∈M tmix(P, 1/8) ≥ K.

Proof. For any matrix P ∈ M we have ‖P‖1 ≤ 1, where the norm is the operator norm

w.r.t. the l1 norm (in fact we have ‖P‖1 = 1). It follows that for any two matrices

P, P ′ ∈M,

‖PK − P ′K‖1 ≤ ‖PK − PK−1P ′‖1 + ‖PK−1P ′ − PK−2P ′2‖1 + . . .+

+‖PP ′K−1 − P ′K‖1 ≤ K‖P − P ′‖1.

For any P ∈ M choose P ′ ∈ N such that ‖P − P ′‖1 < (ε − 1/8)/K. There is an

x ∈ Rn showing tmix(P ′, ε) ≥ K. For this x,∥∥∥∥xPK − 1

n

∥∥∥∥
1

≥
∥∥∥∥xP ′K − 1

n

∥∥∥∥
1

−
∥∥xPK − xP ′K

∥∥
1
> 2ε−K

ε− 1
8

K
>

1

4
.

This confirms tmix(P, 1/8) ≥ K.

We will use this lemma multiple times when we need some extra property for the matrix

(such as all eigenvalues are different) which does not hold for all matrices in M. Observe

that we can use the lemma independently multiple times if N is residual each time.
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From now on, we have to continue on two tracks. The interesting thing is that we can

not prove Theorem 3.13 by a single method. In the following two subsections we introduce

two arguments, one works in the “general” case, when r > c/n and the other works where

the chain is almost reversible in the sense that 0 ≤ r ≤ c/n. None of the two arguments

can be naturally carried over to the other domain.

The status of c/n is also different in the two parts. In the first part, the value of c is

obtained from the proof and is not convenient to change. However, the second argument

works for arbitrary c. Of course the resulting bound on the mixing time depends on the

choice of c. Using this flexibility it is enough to prove these two parts as they can be

stitched together to cover all possible chains.

3.1.2 General non-reversible chains

In this subsection we deal with the case when r > c/n, in other words when the chain is

“far from reversible”.

Theorem 3.16. Given a Markov chain on an n node cycle consider the doubly stochastic

transition matrix P = Q+ rR as in Lemma 3.14. If r > 211/n, then

tmix(P, 1/8) ≥ 1

212
n2.

First we give a very short outline of the proof. We use variables not yet defined and

relations not yet shown, the point is to sketch the formal structure of the proof.

As a start let us look at a series of vectors xl approximately following the evolution of

the chain:

xlP = xl+1 + el,

with x1 being a probability distribution. Observe that P does not increase the l1 norm,

this confirms the following:

∥∥∥∥x1P k−1 − 1

n

∥∥∥∥
1

≥
∥∥∥∥xk − 1

n

∥∥∥∥
1

−
∥∥xk−1P − xk

∥∥
1

−
∥∥xk−2P 2 − xk−1P

∥∥
1
− . . .−

∥∥x1P k−1 − x2P k−2
∥∥

1
(3.1)

≥
∥∥∥∥xk − 1

n

∥∥∥∥
1

−
k−1∑
l=1

∥∥el∥∥
1
.

The left hand side is the quantity we need to keep above 1/4 as long as possible to

ensure a large mixing time. For all l we may use the bound ‖el‖1 < B, and for an
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appropriate k we have ‖xk − 1/n‖1 > A . Now using k ≥ n2/212 and A − kB > 1/4, we

get the bound on the mixing time we are aiming for.

The following things are left.

We have to construct the series xl. It needs to approximately follow the effect of P

so that el is small. We also want to easily access elements with high indices in order to

have a lower bound of the type ‖xk − 1/n‖1 > A. In the end the structure that will give

us these vectors will be completely different from a Markov chain, but with the proper

tuning it will coincide with it in some sense.

Then we need to prove the lower and upper estimates we used above.

The construction

The main idea is to find xl in such a way that xl+1 is obtained from xl by a kind of

rotation. To define the rotation of a vector we proceed as follows. We consider the unit

circle and we fix a function f defined on the circle. We will fix a set of n “observation

points” Z0, Z1, . . . , Zn−1, and define

y0
i = f(Zi).

The rotation of the vector y0 = (y0
i ) is constructed via the rotation of f , defined as

fα ((cos(u+ α), sin(u+ α))) = f ((cos(u), sin(u))) .

Then define

yα = (fα(Z0), fα(Z1), . . . , fα(Zn−1)).

When we use angles we mean them as mod 2π numbers. Obviously, the vectors yα need

not to be probability vectors, so they will have to be normalized. This will be much easier

to describe later, let us leave this for now.

Now, let us specify the functions and variables introduced, starting with fα. This is

piecewise linear in the angle:

fα ((cos(u+ α), sin(u+ α))) =
∣∣∣ u
2π

∣∣∣ , u ∈ [−π, π).

This implies that a rotation by a small angle ϕ would entail a change in yαi by an

amount of ±ϕ/(2π), except perhaps for the indices corresponding to observation points

near α and π + α.

To achieve a similar effect as this rotation by the Markov dynamics, we need

(yαP )i − yαi = ±λ
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for some constant λ, and as many (α, i) pairs as possible. We won’t solve this right away,

but use it as a motivation. Let us write out the left side:

(yP )i − yi = yi−1(qi + r) + yi(1− qi − qi+1) + yi+1(qi+1 − r)− yi =

= −(yi − yi−1)(qi + r) + (yi+1 − yi)(qi+1 − r).

Roughly speaking, the use of the functions fα implies that most yi − yi−1 are propor-

tional to the angular difference of Zi and Zi−1 (neglecting the sign). Let us replace yi−yi−1

with δi in the equation above, and think of δi as this angular difference. We will properly

explain this y − Z − δ relation later.

For the right hand side, let us choose λ = −2r (this is a convenient, but arbitrary

choice) and drop the sign so that we end up with the system of equations:

− δi(qi + r) + δi+1(qi+1 − r) = −2r, i = 0, 1, . . . , n− 1. (3.2)

Now the key point is that this system has a positive solution in δi. The following lemma

ensures this positive solution exists. Once we have δi at our hands, we will properly specify

Zi and thus yi.

Lemma 3.17. Consider the system of equations

−uiai + ui+1bi+1 = −ci, i = 0, 1, . . . , n− 1.

Suppose ai > bi > 0, ci > 0 for i = 0, 1, . . . , n− 1. The indices are taken mod n. Then the

system has a unique, positive solution in ui, i = 0, 1, . . . , n− 1.

Proof. We may rearrange the equation to

ui+1 = ui
ai
bi+1

− ci
bi+1

.

This is a linear equation where ui has a positive coefficient, and a positive constant is

subtracted. We can start with i = 0 to get an expression for u1 in terms of u0. Then we

plug this into i = 1, and so on. After going through the full cycle, we end up at

u0 = Au0 − C.

Here C > 0 because it is the sum of positive numbers, and A =
∏n−1
i=0 ai∏n−1
i=0 bi

> 1. So the

solution u0 = C/(A− 1) is positive. Plugging this back allows us to compute all other ui

and we just made it sure that it will be consistent when we arrive back to u0.

Suppose ui ≤ 0 for some i. From the equation it follows that ui+1 < 0. If we continue

this we find u0 < 0 which is impossible, so indeed ui > 0.

Uniqueness is clear by the method we described.
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Let us add up Equation (3.2) for all i. Lot of terms cancel out and we get

n−1∑
i=0

δi = n.

As we said before, we want these δi to be proportional to the angles between Zi’s. In order

to fit these on the circle, we have to scale them down. Let Z0 be the point at angle 0, and

Zi be the point at angle 2π
∑i

j=1 δj/n.

Let us check the construction. On the half circle where f increases with the angle

yαi − yαi−1 = δi/n, so by Equation (3.2),

(yαP )i − yαi = −2r/n.

The same happens on the other half but with opposite signs. Naturally the nodes near α

and π+α may behave differently, and we have to make sure they stay under control. This

change of ±2r/n corresponds to a 4πr/n angle rotation of fα. This justifies the definition

of the error term

dα = yαP − yα+ 4πr
n . (3.3)

After describing our variables we need to prove the bounds used in the outline of the

proof.

Bounds on errors

First we prove a bound on δi.

Lemma 3.18. For every i,

δi ≤
2

qi
.

Proof. Let us start from equation (3.2) on δi. We can write it in the following way:

(qi + r)δi − (qi+1 − r)δi+1 = 2r.

If δi > 2 (or δi+1 > 2) it follows that

qiδi − qi+1δi+1 < 0.

Now suppose δi >
2
qi

. This is clearly more than 2, so we have

δi+1 >
qi
qi+1

δi >
2

qi+1

.
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We can continue this argument for the next index:

δi+2 >
qi+1

qi+2

δi+1 >
qi+1

qi+2

qi
qi+1

δi =
qi
qi+2

δi >
2

qi+2

.

After doing this n times, we end up with δi > δi which is a contradiction, so the claim of

the lemma is indeed true.

The previous lemma helps to bound dα. This dα will become the error term el used in

the outline of the proof after proper scaling.

Lemma 3.19. For every α,

‖dα‖1 ≤
24

n
.

Proof. If we pick a node i, and fα is linear on the joint arc between Zi−1 and Zi+1, things

work as we designed them, and (yαP )i − y
α+ 4πr

n
i = 0. There are two irregular arcs, those

containing α and π + α, this effects at most four nodes. Let us focus on these nodes.

ii −1 +1i

Figure 3.2: Node near the peak

There would be no error at node i if we used the dashed line, so we have to measure

the difference caused by switching to the real, solid line.

The slope of the line is 1/(2π) so the difference at yαi−1 is at most δi/n. During the

rotation, the peak might reach Zi so the value of y
α+ 4πr

n
i might deviate at most 4r/n from

the dashed line. Adding up these two sources of error we get

∣∣∣(yαP )i − y
α+ 4πr

n
i

∣∣∣ ≤ δi
n

(qi + r) +
4r

n
.

Let us note qi + r and qi− r are both transition probabilities, thus r ≤ qi and r ≤ 1/2.

∣∣∣(yαP )i − y
α+ 4πr

n
i

∣∣∣ ≤ 2
δi
n
qi +

2

n
≤ 6

n
.

The last inequality follows from Lemma 3.18. The same bound is true if the peak is

between Zi and Zi+1. Adding four of these and a few zeros proves the lemma.
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Bounds on initial distance

Although we want to use yα for x1, it is generally not a probability distribution, so we

have to figure out how to scale it. Observe that

yα + yπ+α =
1

2
.

Consequently ‖yα‖1 + ‖yπ+α‖1 = n
2
. The value ‖yβ‖1 is continuous in β, so we can choose

β such that ∥∥yβ∥∥
1

=
n

4
. (3.4)

This β will be fixed from now on, and also x1 = 4
n
yβ, which is now a valid probability

distribution.

The last building block of the proof can be summarized in the following lemma:

Lemma 3.20. Suppose the assumptions of Theorem 3.16 holds. Then there exist a k ∈
[ 1
212
n2 + 1, 1

211
n2 + 1] such that ∥∥∥∥ 4

n
yβ+k 4πr

n − 1

n

∥∥∥∥
1

>
1

3
.

We need some simple lemmas to prove this. Let us introduce the notation

s(α) =

∥∥∥∥ 4

n
yα − 1

n

∥∥∥∥
1

.

Lemma 3.21. The function s cannot change too fast:

|s′(α)| ≤ 2

π
, |s′(α)| ≤ 2

π
∀α ∈ [0, 2π).

Here s′ and s′ are the upper and lower derivatives, respectively. On the other hand, for

the average value:
1

2π

∫ 2π

0

s(α)dα =
1

2
.

Proof. The derivative of 4
n
yαi is in [− 2

nπ
, 2
nπ

]. This also holds if we subtract a constant and

take absolute value. If we add up n of these, we get exactly what we stated.

For the second claim,

1

2π

∫ 2π

0

∣∣∣∣ 4nyαi − 1

n

∣∣∣∣ dα =
1

2

∫ 2

0

∣∣∣∣un − 1

n

∣∣∣∣ du =
1

2n
.

Adding these up gives the second formula.

Lemma 3.22. The function s(α) is continuous and piecewise linear with at most 4n

segments on [0, 2π], assuming 0 and 2π are stitched together.
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Proof. Again,

si(α) =

∣∣∣∣ 4nyαi − 1

n

∣∣∣∣
is piecewise linear with four segments (four points of nonlinearity). If we add up n of such

functions, it will have at most 4n segments.

Now we turn back to the lemma we left over.

Proof of Lemma 3.20: Suppose the claim doesn’t hold. Let us mark the set G of “good”

points in the following sense:

G =

{
α ∈ [0, 2π], s(α) >

1

3

}
.

Let’s look at Lemma 3.22. While we go around the circle on each segment we might step

in or out of G, but at most once. This means G is the union of at most 2n intervals.

On the range of k we are working on, we are rotating

n2

212

4πr

n
= 2π

rn

211
> 2π.

In other words, we rotate through the whole circle. This is the point where we use the

lower bound on r. If the claim does not hold, it means we never hit G as k sweeps its

range. This means we jump over every interval when we reach it. Consequently each

interval is at most 4πr
n

long.

At both ends of such an interval s(α) = 1/3, so by the bound in Lemma 3.21 s(α)

can increase up to at most 1
3

+ 2πr
n

2
π

on such a short interval. We can construct an upper

estimate on the average distance using different bounds on G and outside G. Using Lemma

3.21 again for the average value gives us the following:

2π · 1

2
≤ 4πr

n
2n ·

(
1

3
+

2πr

n

2

π

)
+

(
2π − 4πr

n
2n

)
· 1

3
.

Rearranging this gives

r ≥
√

n

96
.

We know r is at most 1/2. By the condition r > 211/n we also have n > 212. But then

the right hand side becomes more than 1/2 and this leads us to contradiction.

The proof of Theorem 3.16

It only remained to put things together. Based on Equation (3.4) we defined x1 = 4
n
yβ as

the starting probability distribution. The scaled versions of the rotated vectors are

xl =
4

n
yβ+(l−1) 4πr

n .
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The error terms bounded in Lemma 3.19 scale by the same factor thus we may define

el =
4

n
dβ+(l−1) 4πr

n .

Using these notations, Equation (3.3) defining dα becomes

el = xlP − xl+1.

Recall we started from Equation (3.1):∥∥∥∥x1P k−1 − 1

n

∥∥∥∥
1

≥
∥∥∥∥xk − 1

n

∥∥∥∥
1

−
k−1∑
l=1

‖el‖1.

Let us choose k from Lemma 3.20, then the first term in the right hand side is more than

1/3. By the definition of el and Lemma 3.19 we have ‖el‖1 < 96/n2. Plugging these in

and using the bound on k gives∥∥∥∥x1P k−1 − 1

n

∥∥∥∥
1

>
1

3
− (k − 1)

96

n2
≥ 1

3
− 3

64
>

1

4
.

Consequently

tmix(P, 1/8) ≥ k − 1 ≥ 1

212
n2.

3.1.3 Almost reversible chains

In this subsection we will prove the following:

Theorem 3.23. Given a Markov chain on an n node cycle consider the doubly stochastic

transition matrix P = Q + rR. Suppose 0 ≤ r ≤ c/n for some fixed c > 0. Then there is

a c′ > 0 such that

tmix(P, 1/8) ≥ c′n2,

and c′ depends only on c.

The idea is to compare our chain to a reversible one. We try to estimate the errors

when r is small enough. We do this first with an additional condition on the chain, but

we will be able to relax it later.

The reversible case

Let us see how does the proof go if the transition matrix is symmetric. Our argument will

be slightly different and more constructive than the usual eigenvalue estimation.

To reduce complexity, we state and prove Lemma 3.24 only if n is even. The same

argument works for the odd case, we only have to do trivial adjustments.
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Lemma 3.24. Suppose Q is as before, n is even. Then for the initial distribution

x =
4

n2

(
0, 1, . . . ,

n

2
− 1,

n

2
,
n

2
− 1, . . . , 2, 1

)
,

some global c1 > 0 and for any k ≤ c1n
2 we have the bound∥∥∥∥xQk − 1

n

∥∥∥∥
1

>
5

12
.

Consequently,

tmix(Q, 1/8) > c1n
2.

Proof. Let us consider the vector

x0 =
4

n2

(
0, 1, . . . ,

n

2
− 1,

n

2
,
n

2
− 1, . . . , 2, 1

)
− 1

n
.

This is almost the same as x, where 4/n2 is chosen to normalize the vector in parentheses

to a probability distribution. Then we subtract the uniform distribution to make x0

orthogonal to it. (If n was odd, the maximal coordinate would be (n+ 1)/2 and we would

have an extra 0 in the end.)

We will split x0Q
k into two components. One pointing in the x0 direction, providing

the vector is far from uniform, and another perturbing this. We want the first to be large,

the second to be small. Let’s start estimating the first.

It is well known that the Laplacian of the chain is I −Q and that

x0(I −Q)xT0 =
1

2

∑
i,j

(x0,i − x0,j)
2Qij.

The nonzero terms of this sum are 16/n4 ·Qij. If we add these up, we get

x0(I −Q)xT0 =
8

n3
.

On the other hand x0x
T
0 = 1/(3n) + 8/(3n2) > 1/(3n), so it follows that

x0(I −Q)xT0
x0xT0

<
24

n2
.

Using Lemma 3.15 we may assume all eigenvalues of Q are different. Moreover, the matrix

Q is symmetric so its eigenvectors ei form an orthonormal basis. Let the corresponding

real eigenvalues be λi. We can express x0 in this base as x0 =
∑

i αiei for some αi. Using

these notations we may rewrite the previous equation as∑
i(1− λi)α2

i∑
i α

2
i

<
24

n2
.
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It is clear that 1− λki < k(1− λi) for any λi ∈ [−1, 1], so it follows that∑
i(1− λki )α2

i∑
i α

2
i

<
24k

n2
,

or with the original matrix notation

x0(I −Qk)xT0
x0xT0

<
24k

n2
,

x0Q
kxT0

x0xT0
> 1− 24k

n2
.

This is what we need for the part pointing in the x0 direction, so let us now focus on the

remainder.

Let us look at the orthogonal decomposition x0Q
k = αx0 + y, where α > 1 − 24k/n2

according to the previous estimate. The matrix Q is non-expanding w.r.t the ‖.‖2 norm,

so we have

α2‖x0‖2
2 + ‖y‖2

2 ≤ ‖x0‖2
2.

We need to transform this inequality to bound ‖y‖1. We can do this using the inequality

of arithmetic and quadratic means:

‖y‖2
1

n
≤ ‖y‖2

2 ≤ ‖x0‖2
2(1− α2).

Here ‖x0‖2
2 = 1/(3n) + 8/(3n2) < 2/n for n ≥ 2. The final estimate is∥∥∥∥(x0 +

1

n

)
Qk − 1

n

∥∥∥∥
1

≥ α‖x0‖1 − ‖y‖1 ≥ α
1

2
−
√

2(1− α2).

It is easy to verify that this is more than 5/12 if α > 599/600. We can ensure this whenever

k < n2/15000, so in the end we get that c1 = 1/15000 is a sufficient choice for the lemma

to be true.

Non-reversible, but lazy chains

As we outlined before, we want to relate our generic chain to a reversible one. We use the

vector x previously defined. Let us look at the following decomposition:

x(Q+ rR)k = xQk +
k∑
l=1

xQl−1rR(Q+ rR)k−l. (3.5)

We know how the first term behaves, so we need to see that the other term is small.

Q + rR is non-expanding w.r.t. ‖.‖1, so estimating xQl−1rR is enough. If r < c/n then
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there is some hope, as for l = 1 this vector has elements of size 8c/n3, so ‖xrR‖1 ≤ 8c/n2,

which is acceptable if we want to add up an order of n2 of these.

We want a similar inequality for other l, but for this we need the chain to be very lazy,

which means qi ≤ 1/4 for all i. We can ensure this by replacing Q with (3I + Q)/4, but

later we will have to deal with the problem to get back to the original Q.

To get a different view on this error term we may use the estimate

‖yR‖1 =
n−1∑
i=0

|yi+1 − yi−1| ≤ 2
n−1∑
i=0

|yi+1 − yi| =: 2V (y). (3.6)

In other words we are measuring how much the coordinates of a vector vary as we go

around the cycle. The following lemma is what we need to bound this.

Lemma 3.25. Suppose Q is as before and qi ≤ 1/4 for all i. Using the previously defined

x and any k ≥ 0,

V (xQk) ≤ 4

n
.

Proof. The proof is cleaner if we assume that the coordinates of xQk are different for each

k. This is allowed by using Lemma 3.15.

If we go around the cycle we see that the coordinates of x consist of two monotone

series, so there are only two local extrema. We call these peaks. The key thing is to

show that this property remains as we multiply by Q. During the proof we will look at a

few consecutive nodes and a single time step at once and find out how their ordering can

change. We will do this until we cover all possibilities which can occur.

We mostly work by modifying weighted sums of some yi by exchanging one yi to a

larger yj. This way we maintain a sequence of inequalities to find out the new ordering.

Figure 3.3: Two non-peak nodes

One possibility is if there are two non-peak nodes after each other. This means the 4

nodes form a monotone sequence, e.g. yi−1 < yi < yi+1 < yi+2. In this case, we have the

following:
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(yQ)i = yi−1qi + yi(1− qi − qi+1) + yi+1qi+1

≤ yi(1− qi+1) + yi+1qi+1

Here is the only other type of step we use. This time we change the weights instead of the

values. We increase the weight of the larger yi+1 and decrease the weight of the smaller

yi. We use the assumption qi+1 < 1/4.

. . . < yiqi+1 + yi+1(1− qi+1)

≤ yiqi+1 + yi+1(1− qi+1 − qi+2) + yi+2qi+2

= (yQ)i+1.

Consequently the ordering of the values at nodes i and i+ 1 will remain the same.

Figure 3.4: Single peak node

The only other setting that occurs initially if there is a peak node between two non-

peak nodes. Without the loss of generality we may assume they are ordered as yi−2 >

yi−1 > yi < yi+1 < yi+2, and yi−1 < yi+1. A similar claim works as in the previous case:

(yQ)i = yi−1qi + yi(1− qi+1 − qi) + yi+1qi+1

≤ yi(1− qi+1 − qi) + yi+1(qi+1 + qi)

Here we use qi < 1/4 as in the previous case.

. . . < yiqi+1 + yi+1(1− qi+1)

≤ yiqi+1 + yi+1(1− qi+1 − qi+2) + yi+2qi+2

= (yQ)i+1.
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Figure 3.5: Two peak nodes

The ordering between node i and i+ 1 remains the same, but it might change between

node i − 1 and i. In either case, the number of peak nodes will not increase, although

their position might change.

So far the only thing that could have happened that these peaks moved around. After

a few steps we might find a setting different from the previous two, namely when two peak

nodes appear next to each other. We may assume they are ordered as yi−1 > yi < yi+1 >

yi+2. As there are only 2 peak nodes, the sequence yi, yi−1, . . . , yi+1 is increasing, therefore

yi−1 < yi+1 and yi < yi+2. Now we have

(yQ)i = yi−1qi + yi(1− qi+1 − qi) + yi+1qi+1

≤ yi(1− qi+1 − qi) + yi+1(qi+1 + qi)

We need qi < 1/4 again, this time the condition is sharp.

≤ yi(qi+1 + qi+2) + yi+1(1− qi+1 − qi+2)

≤ yiqi+1 + yi+1(1− qi+1 − qi+2) + yi+2qi+2

= (yQ)i+1.

This shows that at least the ordering in the middle will remain as it was. If any of the

other two changes, it has the same effect as in the previous case, namely a peak node will

become non-peak, and maybe the non-peak node after will become a peak node. So the

number of peak nodes does not increase, therefore no other setting can occur.

We covered all possibilities, and the bottom line is that there are only two peaks for

all xQk. Clearly one is a maximum, the other is a minimum, and for such vectors

V (y) = 2
(

max
i
yi −min

i
yi

)
.

This difference does not increase in our case due to the fact that Q is non-expanding w.r.t.

‖.‖∞. In the end V (xQk) is at most its initial value, 4/n.

52



Now we are ready to solve the lazy case.

Lemma 3.26. Given a Markov chain on an n node cycle consider the transition matrix

P = Q+ rR. Suppose qi ≤ 1/4 for all i and 0 ≤ r ≤ c/n for some fixed c > 0. Then there

is a c2 > 0 depending only on c such that for any k ≤ c2n
2 we have the bound∥∥∥∥xP k − 1

n

∥∥∥∥
1

>
4

12
.

Consequently,

tmix(P, 1/8) > c2n
2.

Proof. Consider the error introduced by the rR terms in Equation (3.5), use Equation

(3.6) and the previous lemma:∥∥∥∥∥
k∑
l=1

xQl−1rR(Q+ rR)k−l

∥∥∥∥∥
1

≤
k∑
l=1

∥∥xQl−1rR(Q+ rR)k−l
∥∥

1

≤ r
k∑
l=1

∥∥xQl−1R
∥∥

1
≤ 2r

k∑
l=1

V (xQl−1) ≤ 8rk

n
≤ 8ck

n2
.

If k ≤ n2/(100c), this error is at most 1/12. We want to use Lemma 3.24 so fix c2 =

min(1/(100c), c1), and choose k ≤ c2n
2. For such a k we have∥∥∥∥x(Q+ rR)k − 1

n

∥∥∥∥
1

≥
∥∥∥∥xQk − 1

n

∥∥∥∥
1

−

∥∥∥∥∥
k∑
l=1

xQl−1rR(Q+ rR)k−l

∥∥∥∥∥
1

≥ 5

12
− 1

12
=

4

12
.

Relaxing laziness

We need to transfer our conclusion to non-lazy chains. We use a binomial expansion to

go back to the original Q.

x

(
3I

4
+
Q+ rR

4

)k
=

k∑
l=0

x

(
k

l

)
3k−l

4k
(Q+ rR)l.

This allows us to form an inequality for the l1 distances:∥∥∥∥∥x
(

3I

4
+
Q+ rR

4

)k
− 1

n

∥∥∥∥∥
1

≤
k∑
l=0

(
k

l

)
3k−l

4k

∥∥∥∥x(Q+ rR)l − 1

n

∥∥∥∥
1

.

We will carry through the following idea. Start with k = bc2n
2c as in Lemma 3.26. The

right side is a weighted average of some l1 distances. If the mixing time was very small for
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Q+ rR, then these distances would be small for most of the terms. Then the average will

be less than 4/12 which we previously proved for the left hand side. This contradiction

will prove our claim, and complete the theorem.

Suppose tmix(Q + rR, 1/8) < k/8. The l1 distance is nonincreasing in l, so the terms

are at most 1 and 1/4 before and after tmix(Q+ rR, 1/8), respectively.

k∑
l=0

(
k

l

)
3k−l

4k

∥∥∥∥x(Q+ rR)l − 1

n

∥∥∥∥
1

≤
[k/8]−1∑
l=0

(
k

l

)
3k−l

4k
1 +

k∑
l=[k/8]

(
k

l

)
3k−l

4k
1

4

≤ 1

4
+

3

4
P

(
Binom

(
k,

1

4

)
<
k

8

)
.

This probability can be easily bounded e.g. by Chebyshev’s inequality:

P

(
Binom

(
k,

1

4

)
<
k

8

)
≤ P

(∣∣∣∣Binom(k, 1

4

)
− k

4

∣∣∣∣ > k

8

)
≤

3k
16
k2

64

=
12

k
.

We can find an n0 such that n > n0 implies k > 108. In this case the probability is less

than 1/9, and the right hand side is strictly less than

1

4
+

3

4 · 9
=

4

12
.

This is the contradiction we were looking for.

In the end, let us choose c′ = min(c2, 1/n
2
0) so that the statement is also true for small

n. This concludes the proof for the almost reversible case and thus for the whole theorem.

It turned out that there is no real speedup in the case of a cycle by introducing non-

reversible chains. Let us see what happens if we slightly alter the connectivity graph.

3.2 Adding long range connections

During the struggle to decrease the mixing time of a Markov chain, we may consider

slightly changing the connectivity graph hoping for some improvement.

We have already mentioned the concept of lifting at the beginning of the current

chapter, which has the potential to decrease the mixing time to its square root. However,

we have to note there is no general algorithm to construct the proper lifting of a chain,

one has to work on each problem separately.

In this section we choose another route. We keep the nodes as they are and add

some new connections among them and find out what we can achieve. As an initial

attempt, we tried to come up with promising designs based on some heuristics. These

trials failed miserably which is in line with the fact that the construction of expander

graphs is extremely hard task. The only viable option is to use random graphs.
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Consequently we form the following plan: We take a cycle with n nodes, add certain

number of random edges according to some rule, then estimate the mixing time of rea-

sonable chains over this connectivity graph. Naturally the result strongly depends on the

number of added edges.

If this number is around cn for some c > 0 constant we suddenly arrive at a model of

Small World Networks (SWN). Namely if we add an Erdős-Rényi random graph G(n, c/n)

to the cycle we get the model of Newman et al. [46]. This and other similar models were

built to model large real networks which have small diameter but tend to show clustering,

see Watts, Strogatz [53] for details. There is an intensive research activity on SWNs, the

mixing time of random walks on them has also been investigated. The following result is

due to Durrett [20], Addario-Berry and Lei [1] as it is roughly quoted here:

Theorem 3.27. Consider an n node graph from the model of Newman et al. For the

symmetric random walk we have

c1 log2 n < tmix < c2 log2 n

asymptotically almost surely (a.a.s.) for some global constants c1, c2 > 0.

This is a huge speed gain compared to the mixing time of n2 for the cycle alone what

we have seen in the previous section. Similar results for alternative models have been

shown by Tahbaz-Salehi and Jadbabaie [2]. At this point our goal is to investigate the

options and effects of adding a lower, o(n) number of extra edges.

The target edge density of the added edges is n−α for some parameter α ∈ (1, 2). Thus

we expect cn2−α extra edges. We are interested in the order of the mixing time as n

increases but we do not care about constant factors. Accordingly, from now on c denotes

a positive constant which may change from line to line (unless indicated otherwise). Let

us introduce three slightly different models for choosing the random edges:

M1: We add a random matching on the almost equidistant [n2−α] nodes

{[inα−1], 0 ≤ i < n2−α}.

M2: From all possible long range edges we draw [n2−α] randomly uniformly.

M3: For all possible long range edge we randomly decide to include it or not. Each edge

is included independently with probability n−α.

The models differ only slightly, but the results are different and depend on the tech-

niques we can apply for them. In each case our goal is to choose the transition probabilities

to achieve the fastest mixing while keeping the stationary distribution uniform.
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On the technical side, let us omit all the integer rounding operations. It is always clear

what we mean, and those little errors do not affect the asymptotic properties we look for.

Also, in the M2 and M3 models we allow edges of the cycle to be included as long range

edges to simplify our discussion.

In the beginning we only consider the simple case of homogeneous chains when there

are three common transition probabilities: qc+r for clockwise, qc−r for counter-clockwise

transitions and ql/d(α) for long range edges. These qc > r > 0, ql > 0 are some global

constants. There might be a problem if a node has a lot of long range edges causing the

sum of transition probabilities to go above 1. The following theorem ensures that this is

not an issue.

Theorem 3.28. There is a function d(α) : (1, 2) → N such that there is no node with

more than d(α) long range edges a.a.s. for M1, M2, M3 graphs.

Consequently, assuming 2qc + ql ≤ 1 and using the current d(α), homogeneous chains will

be feasible Markov chains a.a.s.

Proof. The graphs from M1 do not pose a strong restriction, every node has 0 or 1 long

range edge.

Let us now check a single node of an M3 graph. Denote the number of its long range

edges by X which follows a Binom(n− 1, n−α) distribution. We want some upper bound

on P (X > d(α)). Let us use a Chernoff-type estimate:

P (X > d(α)) = P
(
etX > etd(α)

)
≤ E(etX)

etd(α)
,

with arbitrary t > 0. The moment generating function of X is

E(etX) =
(
1 + n−α(et − 1)

)n−1
.

Let us choose t = (α− 1) log n to get the following:

E(etX) =
(
1 + n−α(nα−1 − 1)

)n−1 → c

as n→∞. Let us use this t for the tail probability estimate and choose d(α) = 2/(α− 1)

to get

P (X > d(α)) ≤ c

e(α−1) lognd(α)
≤ c

n2
.

The probability of any node having more than d(α) edges can be bounded above by the

sum of the probabilities for every node. This is still at most c/n thus it does not happen

a.a.s.
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For M2 graphs the number of long rang edges of a single node follows a hypergeometric

distribution which is less convenient than the binomial distribution before. We want to

use our bounds for M3 graphs so we show a special way of generating an M2 graph.

We start with a modified M3 graph where the edge probability is 4n−α. Let the

number of long range edges be m. Depending on whether this is more or less than [n2−α],

we either discard some uniformly from the selected ones or add some uniformly from the

unselected ones. This way we get the prescribed number of edges and the symmetry

ensures everything happens uniformly.

We know there is a d(α) such that the initial M3 graph has at most d(α) long range

edges at every node a.a.s. If we have to discard edges from this graph then this remains

true. The only problem is in the case when we have to add edges, but the probability of

this to happen is:

P
(
m < n2−α) < P

(∣∣∣∣m− 4n−α
n(n− 1)

2

∣∣∣∣ > 1

2
n2−α

)
< c

n24n−α(1− 4n−α)

n4−2α
< cnα−2.

Here we used Chebyshev’s inequality. In the end, this probability also vanishes as n→∞,

consequently the d(α) we got for modified M3 graphs also works for M2 graphs.

Let us now try to get some estimates on the mixing time. The first result is a simple

lower bound based on our original result for cycles.

Proposition 3.29. For M1, let us assume the nodes with long range edges are equidistant

from each other. Then for any homogeneous chain,

tmix ≥ Cn2α−2.

Proof. Observe that we can “wind up” the chain around a cycle of nα−1 nodes so that

long range edges become loop edges, see Figure 3.6.

For a certain starting distribution, mixing on the original chain implies mixing on the

small cycle. Thus the lower bound from Theorem 3.13 for the small cycle also applies for

the mixing time of the original chain.

In the following two subsections we perform a systematic study on the three models.

In Subsection 3.2.1 we determine the exact magnitude of the conductance for each case.

In Subsection 3.2.2 we apply these results to bound the mixing times and also present

simulation results where there is no sharp bound available.

3.2.1 Conductance estimates

For these Markov chains on random graphs we can estimate the mixing times using the

conductance. First we show a technical tool to simplify the minimization for calculating

the conductance.
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Figure 3.6: Reducing M1 graphs

Lemma 3.30. Suppose that S1, S2 ⊂ X , S1 ∩ S2 = ∅ and there is no edge between them.

Then

Φ(S1 ∪ S2) ≥ min(Φ(S1),Φ(S2)).

Proof.

Φ(S1 ∪ S2) =
Q(S1 ∪ S2, (S1 ∪ S2)C)

π(S1 ∪ S2)π((S1 ∪ S2)C)
=
Q(S1, S

C
1 ) +Q(S2, S

C
2 )

π(S1) + π(S2)
· 1

π((S1 ∪ S2)C)
.

The first term is between Q(S1, S
C
1 )/π(S1) and Q(S2, S

C
2 )/π(S2). The second term is

greater than both 1/π(SC1 ) and 1/π(SC2 ), thus the lemma follows.

This means if S has at least 2 connected components, we may discard all but one to

get closer to Φ:

Corollary 3.31. The set S which attains the minimum in the definition of Φ must be

connected.

Let us now present three theorems to determine the exact order of the conductance for

all three models.

Theorem 3.32. For M1 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n1−α < Φ < c2n
1−α.

Proof. The upper bound is simple: Let A be one of the cnα−1 long arcs without a long

range edge. We can use this to bound the conductance:

Φ = min
∅6=S(V

Q(S, SC)

π(S)π(SC)
≤ Q(A,AC)

π(A)π(AC)
≤ c

2n−1

nα−2
= cn1−α.
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The lower bound is a bit more intricate. Using Corollary 3.31 we have to minimize

over connected subsets to find Φ. Connected subgraphs are composed of a collection of

arcs which are connected by long range edges. Let us define the following new chain with

nodes X̃ as shown in Figure 3.7. For every node of X with a long range edge there is one

node in X̃ . Two nodes of X̃ are connected if they are connected in X or if they follow

each other on the cycle. In other words, we reduce all long empty arcs to single edges.

Clearly the new chain has cn2−α nodes.

Figure 3.7: Reducing M1 graphs

We want to compare the conductance Φ of the original chain with the conductance Φ̃

of the new one. For any connected S ⊂ X we may naturally define S̃ ⊂ X̃ by keeping

only the nodes in X̃ . We want to bound Φ(S), but we do not need it for all S ⊂ X .

It makes no difference to work with S or SC because ΦS = ΦSC . If |S̃| > |X̃ |/2, let us

swap S for SC (and pick one of its connected components if needed). This way we can

ensure |S̃| ≤ |X̃ |/2. We need to estimate the expressions appearing in ΦS. The transition

probabilities are the same, the stationary measure changes, thus

Q(S, SC) > c
n2−α

n
Q(S̃, S̃C).

For any node in S̃ there are at most the two adjacent empty arcs present in S, consequently

π(S) < 2π̃(S̃).

We need a similar bound for π(SC). We made sure S̃ is “small” before so we have

π(SC) < 1 ≤ 2π̃(S̃C).

Putting these together we arrive at

ΦS ≥ 4cn1−αΦ̃S̃,

Φ ≥ 4cn1−αΦ̃. (3.7)
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The reduced graph is a cycle with n2−α nodes with a random matching added, which is

in fact the Bollobás-Chung small world model [3]. Our reduced chain is slightly different

as the long range edges have transition probabilities ql/d(α) instead of a global constant.

The conductance of the Bollobás-Chung model is already known see e.g. Durrett [20]

p. 163-164., where it is shown that it is bounded below by a positive constant. The

conductance scales with the transition probabilities, hence for our reduced chain we have

Φ̃ ≥ c

d(α)
. (3.8)

Using this bound in the previous inequality 3.7 finishes the proof.

Theorem 3.33. For M2 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n
1−α

log n
< Φ < c2

n1−α

log n
.

Proof. For an upper bound, we search again for a long arc A without a long range edge.

In this context, adding n2−α random edges means we cut the cycle into arcs at k = 2n2−α

random points. It is rather clear that asymptotically this is equivalent to splitting the

unit interval by k i.i.d. uniform variables. The largest gap is known to be asymptotically

log k/k long, see Devroye [15] or Slud [51]. This tells us the number of nodes in the longest

empty arc A is

n
log k

k
= n

(2− α) log n+ log 2

2n2−α = cnα−1 log n+O(nα−1).

Consequently we can use a similar estimate like before:

Φ = min
∅6=S(V

Q(S, SC)

π(S)π(SC)
≤ Q(A,AC)

π(A)π(AC)
≤ c

2n−1

nα−2 log n
= c

n1−α

log n
.

For the proof of the lower bound we want to follow the same idea as for Theorem

3.32. Let us check what we have to change. First of all, there might be nodes which have

multiple long range edges. For the graph on X̃ we want the long range edges to form a

random matching. Thus we include multiple copies of such a node, each retaining one

long range edge, see Figure 3.8.

The other difference is that empty arcs have different lengths now. Still, we can use

cnα−1 log n as an upper bound for these lengths as we have shown during the first part of

the proof.

We use similar inequalities to those in the proof of Theorem 3.32:

Q(S, SC) > 2cn1−αQ(S̃, S̃C),

π(S) < 2 log nπ̃(S̃),

π(SC) < 2π̃(S̃C).
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Figure 3.8: Reducing M2 graphs

The second inequality is slightly different because the omitted arcs might be longer than

in the previous case. For the third inequality we use the same trick as before to ensure

S̃C is large. This time we get the inequalities

ΦS ≥ 8c
n1−α

log n
Φ̃S̃,

Φ ≥ 8c
n1−α

log n
Φ̃.

We use the the bound 3.8 on Φ̃ again to conclude the proof.

Theorem 3.34. For M3 the conductance of the homogeneous chain satisfies the following

inequality a.a.s.:

c1d(α)−1n
1−α

log n
< Φ < c2

n1−α

log n
.

Proof. Let us start with the lower bound. For any S ⊂ X , |S| ≤ n/2 we have

Q(S, SC)

π(S)
≥ c|∂S|/n
d(α)|S|/n

= cd(α)−1 |∂S|
|S|

,

where ∂S is the set of edges between S and SC . We have to ensure this is large enough

for all possible subsets S. Let us fix s = |S| ≤ n/2 and the number of disjoint intervals l

it consists of. We look at only these subsets at once.

We can estimate the number k of possible subsets in the following way:

k ≤
(
n

l

)(
s

l

)
.

The first binomial coefficient counts how we can choose the starting points of the intervals,

the second distributes the total length of s among them. To continue we use the following

inequality: (
m

t

)
≤
(me
t

)t
.
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For k this gives us

k ≤
(ne
l

)l (se
l

)l
≤ exp

(
l
(

log
n

l
+ log

s

l
+ 2
))

< exp(4l log n).

The outgoing edges from S are partially from the interval boundaries and partially

from the random long-range edges. We have 2l edges at the interval boundaries and the

number of long-range edges L follow a Binom(s(n−s), n−α) distribution. A subset violates

the conductance we proposed if

c
n1−α

log n
>
|∂S|
|S|

=
L+ 2l

s
,

for some c constant. We introduce this new notation because the choice of c is important

as we will see. The probability of this happening can be written in the following way:

p = P

(
Binom(s(n− s), n−α) < sc

n1−α

log n
− 2l

)
.

Let us introduce the temporary notation r = scn1−α/ log n− 2l. If r ≤ 0, then this prob-

ability is 0, we can’t expect anything better. If not, then we have the implied inequality

scn1−α > 2l log n. (3.9)

In this case we have to find an upper bound on p.

p ≤ rP (Binom(sn/2, n−α) = r) =

= r

(
sn/2

r

)
n−αr

(
1− n−α

)sn/2−r ≤ r
(sne

2r

)r
n−αr

(
1− n−α

)sn/2−r ≤
≤ exp

(
log r + r log

sne

2r
− αr log n− sn

2nα
+

r

nα

)
.

We want to find out the asymptotic behavior of this expression. We have αr log n� log r

and αr log n � r/nα so the corresponding three terms add up to some negative number.

The second term can be bounded the following way:

r log
sne

2r
< r log(2n2) <

scn1−α

log n
3 log n = (3c)sn1−α.

This is dominated by the fourth term −sn1−α/2 if c is small enough.

Now let us look at all subsets S of s nodes and l intervals. The probability that there

is one which violates the conductance is at most kp. Using Equation 3.9 we have an upper

bound for k,

log k < 4l log n < (2c)sn1−α.

Let us join our previous estimates. For n large enough we have

log(kp) < (2c)sn1−α + (3c)sn1−α − 1

2
sn1−α =

(
5c− 1

2

)
sn1−α.

62



For c ≤ 1/20 we get a coefficient at most −1/4. From 3.9 again,

1

4
sn1−α >

l

2c
log n.

Here we need c ≤ 1/6 to get at least 3 log n. After all, we end up with

kp <
1

n3
.

The only thing left is to sum over all possible s and l values. This introduces an extra

n2 term, but the sum remains asymptotically 0. In the end we see the lower bound on the

conductance is false only with asymptotically vanishing probability.

Now let us turn our attention to the upper bound. If we find an arc A that is at least

cnα−1 log n long and has no long range edges then we can use the same estimate as before:

Φ = min
∅6=S(V

Q(S, SC)

π(S)π(SC)
≤ Q(A,AC)

π(A)π(AC)
≤ c

2n−1

nα−2 log n
= c

n1−α

log n
.

Again, the choice of c plays an important role, this is the reason for the distinct notation.

To find such an arc, let us split the cycle into arcs of length b = cnα−1 log n. We define a

graph on these arcs, we connect two of them if there is any long range edge between them.

This is in fact an Erdős-Rényi random graph. Our goal translates to finding an isolated

node in it.

It is known for Erdős-Rényi graphs [22] with k nodes and edge probability p that there

are some isolated nodes a.a.s. if p < (1− ε) log k/k. In our case the number of nodes is

k =
n

b
=

n2−α

c log n
.

We can bound the edge probability by adding up the probabilities of all the possible long

range edges between two arcs:

p ≤ b2n−α = c2nα−2 log2 n.

We have to compare this quantity with the following:

log k

k
= cnα−2 log n((2− α) log n− log c− log log n).

The major term is the first one, which is fortunately of the same order as p. In order to

have an isolated node we simply need

c2 < c(2− α),

c < 2− α.

There was no other restriction on c apart from being positive so we can choose it to satisfy

this last inequality. This concludes the proof.
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3.2.2 Mixing time bounds

Using Theorem 3.10 on the previous conductance bounds we arrive at the following corol-

lary about the mixing times:

Corollary 3.35. For M1 the mixing time of the reversible homogeneous chain satisfies

the following inequality a.a.s.:

c1n
2α−2 < tmix < c2d(α)2n2α−2 log n.

Similarly, for the M2 and M3 reversible homogeneous chains we have

c1n
2α−2 log2 n < tmix < c2d(α)2n2α−2 log3 n.

For non-reversible chains, the asymptotic bounds become

c1n
α−1 < tmix < c2d(α)2n2α−2 log n,

c1n
α−1 log n < tmix < c2d(α)2n2α−2 log3 n.

for homogeneous M1 and homogeneous M2 or M3 chains, respectively.

Proof. The general bounds follow simply by combining Theorem 3.10 with the conductance

bounds Theorem 3.32, Theorem 3.33 and Theorem 3.34.

We only need to show the sharper lower bounds for reversible chains. Observe that

during the proofs of the previous conductance bounds we always used the fact that there

is a long arc without a long range edge a.a.s. To be precise, for M3 chains we only found

an arc cnα−1 log n long that has no long range edge going out of it. Still, the probability

of having no long range edge within the arc is

(1− n−α)(cnα−1 logn)2 = (1− n−α)
nαc

log2 n

n2−α > e−2c log
2 n

n2−α

This is 1 in the limit, consequently a.a.s. the arc we have chosen does not have any long

range edge at all. Let us now focus only on this arc. Without going into details, mixing

only within this part needs at least cn2α−2 steps for reversible M1 chains or cn2α−2 log2 n

steps for reversible M2 and M3 chains. This provides the missing bound.

All the previous results are about homogeneous chains. However, we are more inter-

ested in the best mixing time we can achieve on the same graphs using different chains.

The following Corollary provides the answer.

Corollary 3.36. The bounds of Corollary 3.35 also hold for the fastest M1, M2, M3

chains.
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Proof. The mixing time of the fastest chain can not be higher then the mixing time of any

specific chain on the same graph. This ensures the upper bound.

To get the lower bound observe that the long empty arc is still there. It poses the

same upper bound on the conductance (the constant might be different) also giving the

general lower bound and provides the same lower bound for mixing time in the reversible

case.

For reversible chains the gap is reasonably tight. For non-reversible chains it is still

unclear where the truth lies in between these bounds.

Still, we hope there is a considerable gain for non-reversible chains as shown in Figure

3.9. This is a plot of mixing times of homogeneous reversible and non-reversible chains on

several graphs coming from M2, for α = 1.5.
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Figure 3.9: Log-log plot for mixing times of homogeneous M2 chains

The sizes of the graphs change between 100 and 2000 exponentially. We generated

222 random graphs for each size and calculated the mixing times for a reversible and a

non-reversible chain on them. As we are not interested in the extremes, we discarded

the lowest and highest 5% of mixing times for each size, leaving us with a total number

of 30000 graphs. The results for these graphs are plotted as a histogram on a log-log
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scale. The upper cluster contains the data for the reversible chains, the lower for the

non-reversible ones. The two noisy diagonal lines are simply the averages.

It is clearly visible that non-reversible chains offer a significant speedup over reversible

ones in this setting. We hope to quantify this gain in the future but at this point, we do

not aim for a bold guess as log n and nδ factors can be easily mistaken for each other on

this scale.

On the other hand we may guess the mixing time for reversible chains is n logδ n based

on Corollary 3.35. By looking for the best fit on the data we arrive at the estimate δ = 2.02,

which suggests that the lower bound is the one that is sharp.

3.3 Open questions

Let us begin the list with the last topic, where our knowledge ends. In the light of the

measurements shown in Figure 3.9 we are eager to find theoretical estimates about the

speedup that is clearly visible.

Another natural question is to ask for a lower bound of the mixing time for other

connectivity graphs. It is easy to answer this problem in the extreme cases. When the

graph is a tree, all chains will be reversible (assuming uniform stationary distribution),

and known theory applies. For a complete graph mixing in a single step is possible even

without violating reversibility.

We might also try to extend our results for time-inhomogeneous Markov chains. In the

case of the cycle, there is one thing that is clear. If we do not require all the transition

matrices to be doubly stochastic, we can easily construct a chain that mixes in the order

of n steps.

Another direction to look forward is the problem of graph design: here one may want

to find the fastest mixing chain satisfying specific constraints such as an upper bound on

the edges of the connectivity graph, or a locality constraint. Note that general methods,

such as the Metropolis-Hastings algorithm ([28]) do not give the fastest mixing chain for

specific problems. Namely, if we want to sample from the uniform distribution, then it

necessarily produces a reversible chain, and it does not exploit the possibility of using a

non-reversible one. This alone shows that the problem of design deserves a closer look.
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Abstract

In this thesis we investigate the long term behavior of random processes. The dynamics

we consider are all unusual in some sense, the standard techniques need to be accompanied

by unique approaches.

In the first part we work on problems with biological motivation. Our goal is to model

the inheritance of congenital abnormalities. The main difficulty comes from the underlying

process - the genetic information - which evolves in a way that two copies generate a single

new one. Studying the stability of such processes is often hopeless. However, in this case

it was possible to find the so called Poisson model where we could show that the process

approaches a well defined stationary distribution independent of the starting population.

We could determine the risk of the appearance of the malformation in different scenar-

ios. For example, we know the conditional probability of an uncle of a malformed child

developing the disease. The significance of this comes from the fact that these are the

quantities we can acquire from Hungarian population data. This way we get the opportu-

nity to check how realistic our model is. It turns out that the Poisson model fits to most

of the Hungarian datasets pretty well, partially because the Poisson model is richer than

the classical Gaussian model.

In the second part of the thesis we work with Markov chain mixing times. The funda-

mental goal is to modify the transition probabilities of a Markov chain in order to decrease

the mixing time as much as possible. This has to happen while retaining the set of al-

lowed transitions and the stationary distribution. The problem is manageable whenever

the Markov chain is restricted to be reversible, in other words when the transition prob-

ability is the same in the two directions for any allowed transition. In this case there are

known algorithms to find the fastest chain and also algebraic tools work well to deal with

the problem.

The situation is much more complicated for non-reversible chains. Still, when the

allowed transition form a cycle of n nodes we could show that the mixing time is still at

least of the order of n2, as in the reversible case. To achieve some speedup, we allow a

few more transitions to occur. It is known that with the inclusion of cn new transitions,

the mixing time drops to log2 n, but we want a lower number of new transitions. In

the reversible case we could determine the magnitude of the mixing time up to a log n

factor. In the non-reversible case the resulting bounds are not sharp, but with the help

of computer simulations we think it is possible to achieve a notable speedup compared to

reversible chains.
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Összefoglalás

Az értekezésben különböző véletlen folyamatok hosszútávú viselkedését vizsgáljuk. Az

előkerülő dinamikák mind valamilyen szempontból szokatlanok, ezért a standard módsze-

reken túl egyedi megközeĺıtésekre is szükség van.

Az első részben biológiai ind́ıttatású kérdésekkel foglalkozunk. Célunk születési ren-

dellenességek öröklődésének modellezése. A fő nehézséget az okozza, hogy a háttérben

húzódó folyamat - a genetikai információ - úgy terjed, hogy két példányból keletkezik az

egy újabb. Az ilyen folyamatok stabilitásának vizsgálata sokszor reménytelen, szerencsére

azonban sikerül egy olyan modellt, az ún. Poisson modellt találni, ahol be lehet látni, hogy

a kezdeti populációtól függetlenül a folyamat egy jól meghatárzott stacionárius eloszláshoz

tart.

Sikerült a modellben a betegség különböző előfordulásainak kockázatát meghatározni,

például megmondani egy beteg gyerek esetén a nagybácsi betegségének feltételes való-

sźınűségét. Ennek azért van jelentősége, mert magyar orvosi adatokból ezeknek a men-

nyiségeknek kapjuk meg a mért értékét. Ezáltal lehetőség nýılik arra, hogy a modellünk

realitását teszteljük. A legtöbb adatsorra kifejezetten jól illeszkedik a Poisson modell, ez

annak is köszönhető, hogy gazdagabb, mint a klasszikusan használt Gaussi modell.

Az értekezés második részében Markov-lánc keverési időkkel dolgozunk. Szeretnénk az

átmenetvalósźınűségeket úgy meghatározni, hogy a keverési idő a lehető legkisebb legyen.

Mindezt úgy, hogy a lehetséges átmenetek halmaz a rögźıtett és a stacionárius eloszlás nem

változhat. Egyszerűbb a helyzet, ha a Markov-lánc reverzibilis, ami esetünkben úgy is

fogalmazható, hogy minden átmenetnél ugyanannyi a két irányba az átmenetvalósźınűség.

Ekkor léteznek algoritmikus módszerek a leggyorsabb lánc megtalálására, és hatékony

algebrai eszközök is rendelkezésre állnak.

Lényegesen nehezebb a helyzet, ha a reverzibilitást nem tesszük fel. Mégis, sikerül

belátni, hogy amennyiben a lehetséges átmenetek egy n csúcsú kört alkotnak, a legjobb

keverési idő továbbra is n2 nagyságrendű, ahogy a reverzibilis esetben is. A gyorśıtás

elérése érdekében néhány plusz lehetséges átmenetet adunk a körhöz. Ismert, hogy cn

átmenet hozzáadásával a keverési idő log2 n-re csökken, azonban mi ennél kevesebb új

átmenetet szeretnénk megengedni. Reverzibilis esetben egy log n faktor erejéig pontosan

meg tudjuk határozni a keverési idő nagyságrendjét. Nem-reverzibilis esetben a korlátaink

nem élesek, azonban számı́tógépes szimuláció eredményeképpen látszik, hogy lényeges gy-

orśıtás érhető el a reverzibilis esethez képest.
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