
 
Uracil-DNA in Drosophila melanogaster 

 
 
 

Ph.D. thesis 
 
 

Villő Muha 
 
 

Supervisor: 
 

Beáta G. Vértessy Ph.D., D.Sc. 
Scientific Advisor 

 
Laboratory of Genome Metabolism and Repair 

Institute of Enzymology, Hungarian Academy of Sciences 
 
 

 
 
 

Doctorate School in Biology 
Structural Biochemistry Ph.D. Program 

 
Head of the Doctorate School in Biology: 

Anna Erdei, Ph.D., D.Sc., professor 
 

Program head: 
László Gráf, Ph.D., D.Sc., professor 

 
 

 
 
 

Eötvös Loránd University, Faculty of Science, 
2010 



Contents 

 

Acknowledgement            4 

Abbreviations             5 

 

Prologue             7 

Introduction             8 

Uracil in RNA and in DNA          8 

Uracil Repair          11 

DNA damaging agents, lesions and DNA repair processes    11 

Base excision repair         14 

Uracil-DNA glycosylases        20 

The significance of nucleotide metabolism and dUTP incorporation  27 

The significance of dUTPase        29 

Human dUTPase and Drosophila dUTPase: similarities and differences  30 

Nuclear localisation signal sequence of dUTPase     31 

Life cycle of Drosophila melanogaster      31 

Specific attributes of uracil repair in Drosophila melanogaster   32 

 

Aims            34 

 

Materials and methods         35 

Methods used for localisation studies       35 

Culturing Drosophila Schneider 2 cells      35 

Cloning of dUTPase-eYFP fusion protein constructs    35 

S2 cell culturing, transfection and selection      36 

Localisation of dUTPase-YFP in S2 cells      36 

Microinjection of S2 cell extract into Drosophila embryo, confocal microscopy 36 

Methods used for investigating cellular response to uracil-DNA in cell culture  37 

Culturing Drosophila Schneider 2 cells      37 

Culturing human HeLa cells        37 

Alamar blue assay for determining the effect of 5’FU and FdUR   37 

U-plasmid interpretation assay in cell culture     38 

 

 2



Methods used for investigating cellular response to uracil-DNA in fruitfly  39 

U-plasmid interpretation assay in Drosophila embryo    39 

Gal4/UAS system         39 

RNA interference         40 

Western blot           43 

Creating ActGal4/Cyo, GFP Drosophila melanogaster stock   43 

Maintaining Drosophila melanogaster      43 

Method used for measuring uracil content of Drosophila biological samples  44 

 

Results            48 

Subcellular localisation of Drosophila dUTPases     48 

Identification of a putative NLS segment conserved among dUTPases  48 

Localisation of Drosophila dUTPase isoforms in S2 cells    49 

Localisation shifts of Drosophila dUTPase within embryos    50 

Uracil-DNA in Drosophila: interpretation and developmental involvement 52 

Cellular response to uracil-substituted plasmid DNA in cell culture  52 

Cellular response to misregulated dUTP/dTTP ratio    53 

Examining cellular response to uracil substituted plasmid DNA in embryo 54 

dUTPase RNAi in Drosophila melanogaster     54 

Uracil content of Drosophila biological samples     56 

 

Discussion           60 

Subcellular localisation of Drosophila dUTPases     60 

Uracil-DNA in Drosophila: interpretation and developmental involvement 62 

Cellular response to uracil-DNA in Drosophila melanogaster   62 

Significance of dUTPase in Drosophila      63 

Uracil content of Drosophila biological samples     64 

Protein factors putatively involved in response to uracil-DNA in Drosophila 64 

Further speculations and open questions      68 

Epilogue           70 

Summary           71 

Hungarian Summary          73 

Reference list           75 

Publication list          83 

 3



Acknoldegement 

 

First of all, I honestly thank my supervisor, Beáta G. Vértessy D.Sc., for giving me the 

opportunity to begin research in the exciting field of DNA repair, for her continuous support 

and encouragement from the initial to the final steps. 

 

I owe so much to Imre Zagyva, who always helped me patiently, from the very first moment I 

entered the Lab. 

I thank Angéla Békesi for initiating this work and giving generous advice. 

I am indebted to András Horváth for everyday discussions and for his inspiring drawings. 

I would also like to thank to all my colleagues, Mária Pukáncsik, Balázs Varga, Judit Tóth, 

Emese Kónya, Enikő Takács, Ildikó Pécsi, Ibolya Leveles, Veronika Németh, Gergely Róna, 

Júlia Kovári, and Gábor Merényi for their advice and help when I needed it, just as well as for 

creating a supportive environment and a lively atmosphere in the Lab.  

I thank Barbara Hodoscsek undergraduate student, who also contributed to this work. 

I also would like to offer my regards to all of those working in the Institute of Enzymology 

who supported me in any respect. 

 

During this work I have collaborated with many colleagues for whom I have great regard. 

I gratefully thank Prof. János Szabad for his hospitality and for providing me the opportunity 

for working in his Lab (University of Szeged, Faculty of Medicine, Department of Biology) 

as a guest. During that, Zsolt Venkei assisted in microinjecting Drosophila embryos for 

localisation studies. 

Miklós Erdélyi and his whole group (Institute of Genetics, Biological Research Center, 

Szeged), deserve special thanks for their valuable advice and friendly help. Their kind support 

and guidance have been of great value in this study and inspired me to work with fruitflies in 

the future. 

 

I wish to thank Prof. Péter Friedrich and Prof. Péter Závodszky, former directors of the 

Institute of Enzymology for allowing me to do my Ph.D. research at the institute. 

 4



Abbreviations 
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DUT-M human dUTP pyrophosphatase, mitochondrial isoform 
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dUTP 2-deoxyuridine-5-triphosphate 
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Hx hypoxanthine 
IC50 half maximal inhibitory concentration 
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MMR mismatch repair  
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ROS reactive oxygen species 
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siRNA short interfering RNA 
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XP xeroderma pigmentosum 
 
 

 6



Prologue 

 

The present study aimed to discuss different aspects of uracil emerging in DNA. It will give a 

detailed overview about its physiological impact, and about uracil-DNA induced cellular 

response. Furthermore, significance of uracil-DNA associated mechanisms and enzymes are 

assessed. My research has attempted to evaluate the impact of uracil-DNA in Drosophila 

melanogaster, with special emphasis on its life cycle. In advance, Figure 1 highlights the main 

subjects of this thesis. 

 

 

 

Figure 1 Uracil-DNA and related processes are the main subjects of this thesis 
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Introduction 

 

Uracil in RNA and in DNA 

 

Generally, flow of genetic information follows the DNA to RNA to protein scheme according 

to the central dogma of molecular biology. DNA encodes, stores, and transmits the genetic 

instructions required for cellular functions. Information encoded in DNA is translated into 

RNA and protein levels which then possess structural, regulatory and enzymatic functions that 

are required for development, differentiation and normal cellular processes. 

From the chemist’s point of view, DNA is a negatively charged polymer which forms a 

double helix structure. Building blocks of DNA are deoxyribonucleotides with four different 

bases: adenine, guanine (pyrimidine bases) and thymine and cytosine (purine bases)       

(Figure 2). Within the helical structure of DNA, adenine forms base pairs with thymine and 

guanine with cytosine through hydrogen bonds, thus sequence of one strand of DNA 

completely determine the sequence of the other strand [1]. 

Contrary to DNA, RNA usually exists as a single stranded macromolecule where double 

stranded segments may also form. Regarding its chemical composition, in the sugar-

phosphate backbone of RNA ribose is present instead of deoxyribose, and uracils substitute 

thymine bases (Figure 3). The only difference between thymine and uracil is a methyl group 

in 5’ C atom position. Therefore thymine is actually methylated uracil, and uracil is a thymine 

analogue [1]. 

 

Figure 2 RNA and DNA bases. Uracil is present almost exclusively in RNA. 
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Figure 3 Thymine vs. uracil and deoxyribose vs. ribose exchanges are the major chemical 

differences between DNA and RNA. 

 

 

Textbooks say that uracil is not a native component of DNA. However, it occurs with 

relatively high frequency [2]. These emerges are due to endogenous cellular processes such as 

dUMP incorporation during replication or spontaneous cytosine deamination (Table 1). In 

most cases, appearances of uracil are regarded as DNA damage and induce DNA repair 

mechanisms specific to uracil elimination [3].  

Incorporation of uracil during DNA synthesis is the main source of uracil in DNA. As most 

DNA polymerases are not able to distinguish between dUTP and dTTP, only dUTP/dTTP 

concentration ratio would determine which nucleotide is more likely to build in to the new 

DNA strand. If dUTP is used instead of dTTP (thymine-replacing uracil incorporation), uracil 

in the newly synthesised DNA forms base pair with adenine in the template strand. In this 

case uracil “contamination” does not change the genetic information, it is not mutagenic. 

In contrast to this, deamination of cytosine would lead to G:C to A:T transition mutations 

(Figure 4 and Figure 5), the most abundant base substitution mutation observed in aerobic 

organisms [2, 4]. If uracil within the G:U context is not corrected, opposite to uracil an 

adenine will be incorporated during the subsequent round of DNA replication.. Deamination 

of cytosine generates uracil witha frequency of 100 – 500 per day in the genome of a human 

cell [2, 5], thus it has a high mutagenic potential. 
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  Figure 4 Deamination of cytosine 

 

 

 

 

 

Figure 5 Deamination of 

cytosine is a mutagenic 

base modification
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Mechanism  Original bp Resulted bp Effect  

Thymine-replacing incorporation  A:T A:U Non-mutagenic  

Cytosine deamination  G:C G:U Mutagenic  

Table 1 Source of uracil in DNA 

 

Spherical consequences of uracil in DNA very much depend on the nature of base pairing 

partner. Calculated base pairing energies and hydrogen bond distances of uracil in DNA were 

reported [6]. The strength of the G:U interaction is 10 kcal mol−1 less than the interaction in 

the Watson–Crick G:C base-pair, and the distance between G and U is somewhat different 

from G-C distance. Calculations further support that uracil arisen from dUMP incorporation 

serves equivalent analogue of thymine if it paired with adenine, because A:U and A:T possess 

the same interaction energies and hydrogen bond distances [6]. 

 

Uracil arisen from either dUMP incorporation or cytosine deamination is eliminated from the 

DNA by the action of a set of DNA repair enzymes [7]. Mostly the base excision repair 

(BER) mechanism is responsible for uracil repair, which is not able to distinguish between 

harmful uracil (cytosine deamination born) and neutral uracil (dUMP misincorporation born). 

dUTPase prevents the incorporation of dUMP, by efficiently reducing the dUTP pool 

available for DNA synthesis [3, 8]. 
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Uracil Repair 

 

DNA damaging agents, lesions and DNA repair processes 

 

Genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and 

environmental origin [9]. Damages could cause single base substitutions, chromosome 

aberrations and block of replication or transcription etc., thus leading to severe defects in 

cellular function. These lesions of DNA contribute to diseases, carcinogenesis and ageing [2, 

10-12]. Several evidences support that accumulations of DNA damages are the main source of 

cancer development, where mutation in genes involved in cell cycle regulation and DNA 

repair further leads to progression of malignant condition. According to the nature of damage, 

specialised DNA repair processes have been evolved to restore the integrity of genetic 

material [5]. 

 

DNA damages arisen from endogenous metabolic processes occur at significant rates in vivo. 

Hydrolysis, oxidation, alkylation and deamination represent the most significant adverse 

effects to DNA [9] (Figure 6). Spontaneous hydrolysis of the N-glycosylic bond generates an 

abasic site, also termed as apurinic/apyrimidinic site (AP site). It has been suggested that up to 

10,000 bases are lost per day per mammalian cell owing to hydrolytic depurination [13]. 

Attack of reactive oxygen species (ROS) generated as by-products of normal aerobic 

metabolism gives rise to many oxidized bases, e.g. 7, 8-dihydro-8-oxoguanine (8-oxoG),      

2-hydroxyadenine (2-ohA), thymine glycol (Tg) or 5-hydroxy cytosine [14]. Alkylation of 

DNA bases constitutes the third large group of endogenous base modification. The 

intracellular methyl group donor S-adenosylmethionine may covalently modify ring nitrogen 

residues of DNA bases, resulting in particularly 7-methylguanine and 3-methyladenine [14]. 

An other base alkylating modification can be generated in DNA as a consequence of lipid 

peroxidation [15]. In addition, DNA bases are susceptible to hydrolytic deamination, which 

affects all DNA base residues except thymine, as this latter does not contain an amino group. 

Deamination converts cytosine to uracil, 5-methylcytosine (meC) to thymine, guanine to 

xanthine and adenine to hypoxanthine. By comparison, deamination of purines is a minor 

reaction while deamination of cytosines in G:meC or G:C base pairs occurs relatively 

frequently resulting in G:T or G:U mispairs respectively [2]. By comparing deamination rate 

of meC and C, it was shown that 5-methylcytosine can be deaminated three to four times more 

rapidly than cytosines [8]. In addition, G:T or G:U pairs are repaired through different DNA 
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repair systems: uracil is very rapidly recognised and excised by uracil-DNA glycosylases, 

while the G:T basepair in DNA is a substrate for the less effective mismatch-specific repair 

system (MMR) [2]. Therefore it is suggested that meC deamination could be a major 

contributor to C-T transition at CpG sites, even though meC represents only 2-5% portion of 

all cytosines [2]. The double threat lurking in meC deamination is that such modification could 

not only alter genetic information, but also affect the epigenetic status.  

 

 

methylation   oxydation  deamination        misincorporation                  hydrolysis 

 

 

Figure 6 Endogenously generated base modifications [16] 

 

 

During replication, misincorporation of nucleotides would lead to mismatches at a relatively 

high rate, but the proofreading activity of DNA polymerase cleaves these mistakes off by 

utilizing its 3’-5’ exonuclease activity [1]. Only dUMP could stay permanently in A:U pairs 

of newly synthesised DNA, because for most DNA polymerases, uracil is akin to thymine. 

Generally, base excision repair (BER) is responsible for the elimination of damaged bases or 

base losses, and MMR corrects mispairs. During replication, the structure of DNA is 

particularly exposed to various damages. Notably single strand break (SSB) may occur, 

especially upon ROS attack, leading to collapse of replication fork [2]. These SSBs are also 

repaired via enzymes acting in later stages of BER. The beauty of BER lies in its ability to 

handle numerous chemically distinct damages by making their repair converged to similar 

intermediates. 

 

Large number of various environmental mutagens exists; such as UV radiation, X-ray, 

radioactivity and a wide variety of chemical compounds. Still, under normal circumstances, 

DNA damage arisen from endogenous origin is a more frequent event, than exogenous 

damage [17]. UV light is the most important environmental mutagen [18]. It causes the 
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formation of dipyrimidine photoproducts, principally cyclobutane pyrimidine dimers and (6-

4) photoproducts, which are covalent modification of two adjacent pyrimidin residues [10]. 

These lesions are highly toxic and mutagenic to cells. Mutations that inactivate tumor 

suppressor genes, for example p53 often exhibit the signature pattern of UV-induced sequence 

changes in the DNA of skin cancer cells [9]. Presence of photoproducts yields torsion in DNA 

structure which serves as a basis of damage recognition for the nucleotide excision repair 

pathway (NER) [19]. Defects in NER pathway in human cells lead to the severe inherited 

disease xeroderma pigmentosum (XP), which is a well-characterised example of DNA repair 

deficient condition [20]. 

Many exogenous chemical compounds react with DNA causing bulky adduct formation with 

characteristic DNA structure distortion, constituting a substrate for NER [9]. Alkylating 

agents, aromatic substances, heavy metals could be harmful for DNA and cells. Planar 

aromatic compounds can react with DNA by intercalation, therefore block transcription. 

The most severe DNA damage is double strand break (DSB), as a consequence of which a 

fragment of chromosome, i.e. large amount of genetic information could be lost. Ionizing 

radiation emerging upon, for example radioactive decay, and X-ray radiation are deleterious 

for cells because they may induce DSB. To counter this treat, free DNA ends are effectively 

rejoined by homologous recombination (HR) or non-homologous end joining (NHEJ) repair 

processes [21]. During inherent homologous recombination or upon the action of abortive 

topoisomerase I and topoisomerase II action, DSBs are also introduced endogenously [5].  

DNA damaging agents could introduce mutations to DNA, and in this way initiate cancer 

development. However, they are also widely used to treat cancer in chemotherapy and 

radiotherapy clinical strategies. In therapeutic applications DNA damaging is supposed to 

reach such a toxic degree that provokes cell death even in cancer cells. 

In addition, DNA damages can induce diverse reactions in cells, with far-reaching 

consequences, termed as DNA damage response (DDR) signalling, which is far more 

complex than sole DNA repair. DNA damage signalling has large impact on cell cycle 

regulation, cell fate decision (apopotosis/senescence), transcription regulation and DNA repair 

[5, 22].  
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Damaging agent 
Oxygen radicals UV light IR Replication error 
Alkylating agent 
Deamination 

Chemicals 

Hydrolysis 
Misincorporation 

Polycyclic aromatic 
hydrocarbons 
  
  

X-ray 
  

Deamination 
  
  

Lesion 
Abasic site Dipyrimidine 

photoproducts  
Double strand break A:G mismatch 

Uracil T:C mismatch 
8-oxoguanine Insertion  
Single strand break 

Bulky adducts 
  
  

Interstrand crosslinks 
  
  Delition 

Repair process 

Base Excision Repair 
Nucleotide 
Excision Repair 

Homologous 
recombination 

Transcription-coupled repair 
Non-homologous end 
joining 

Mismatch Repair 
  

 
Table 2 Damaging agents, DNA damage and DNA repair 

 
 
 
 
Base excision repair 
 

Base excision repair (BER) is perhaps the most fundamental and ubiquitous DNA repair 

mechanism in all higher organisms. It counteracts the mutagen effect of numerous minor 

alterations of bases mostly emerging from endogenous origin [14]. Consequently, BER 

possesses a major role in maintaining genetic integrity of the genome. For example, the 

human base excision DNA repair pathway repairs ~10,000 lesions per cell per day [2]. 

BER is a multiple-step mechanism which is initiated by detection and excision of an altered 

base residue in free form by a DNA glycosylase. DNA glycosylases cleave the base–

deoxyribose N-glycosylic bond of a damaged nucleotide residue leaving an abasic site behind 

(Figure 7) [23]. The abasic site, which may also occur due to endogenous hydrolysis, serves 

as a common intermedier in BER processes of chemically distinct DNA base damages [9]. In 

a subsequent step AP endonuclease or AP lyase make an incision at the AP site (Figure 8) 

[14]. AP endonuclease catalyses the 5’-phosphodiester hydrolysis leaving a nick with a 3’-OH 

and a 5’-deoxyribose 5-phosphate (dRP) end. Contrary to this, AP lyase cleaves the DNA 

backbone on the 3' side of the AP site. Both reactions generate a single strand break [14]. 

Next, repair process is completed with repair synthesis and ligation. These later steps can 

proceed by short patch or long patch pathway of BER involving different protein partners 
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(Figure 9). The distinction is based on the number of newly incorporated nucleotides: in the 

short patch only one nucleotide is sufficient to fill the gap, while during long-patch BER 2-8nt 

stretches are synthesised beginning at the damaged site [24]. In most cases, BER follows the 

short-patch pathway, when DNA Polβ (polymerase β) induces elimination of the 5’-phosphate 

at the AP site via its dRP-lyase activity and the final ligation step is carried out by DNA ligase 

III in partnership with the scaffold protein XRCC1 [24]. If the long-patch pathway is 

employed, dRP moiety in conjunction with the sugar residue is removed by flap endonuclease 

I (FEN1) [14]. Thus strand displacement synthesis does no longer require dRP-lyase activity 

of DNA polymerase β. In long patch BER, repair synthesis can be carried out by Pol δ and 

Pol ε in addition to Pol β. For this process, it is essential that Polδ and Polε are in interaction 

with proliferation nuclear antigen (PCNA) and replication factor C (RFC). PCNA has an 

important role in long-patch BER; it recruits FEN1 and DNA ligase I to the AP site and 

stimulates nuclease activity of FEN1 [14].  

Participants of both short- and long-patched BER are conserved from E.coli to mammals; 

however absence or presence of particular enzymes may differ from species to species. 

 

 

 

Figure 7 DNA glycosylases cleave the base–deoxyribose N-glycosylic bond of a damaged 

nucleotide residue leaving an abasic site behind. Figure 7 shows uracil removal from DNA by 

uracil-DNA glycosylase. 
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Figure 8 AP endonuclease and AP lyase can make an incision at the AP site generating         

5’-deoxyribose 5-phosphate (dRP) end or 5’phosphate (5’P) end respectively 

 

 

 

 

 

 

Figure 9 An outline of the BER pathway, including the two subpathways known as the short-

patch and long-patch repair pathways. (Reproduced with modifications from Schultz-Norton 

et al. [25]) 
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Several DNA glycosylases have been identified and their substrate specificities have been 

described [14]. Each acts on a limited number of modified or damaged bases. BER is unique 

among the DNA repair processes in that the individual base lesions are recognized by distinct 

enzymes. Four enzymes have been identified in human cells which are responsible for 

oxydised base lesion repair [14]. The 8-oxoguanine glycosylase (OGG1) removes oxidized 

purines (8-oxoG and ring-opened guanine, i.e., formamidopyrimidine) and NTH1 removes 

oxidised pyrimidines (T/C-glycol, dihydrouracil). Mammalian specific DNA glycosylases, 

NEIL1 and NEIL2 target for example, ring-opened purines, T-glycol and 5-hydroxyuracil, 

and preferentially excise base lesions from single-stranded DNA [14]. NEILs induce a PNK-

dependent unique BER subpathway, which does not need AP endonuclease as NEILs have βδ 

lyase activity and polynucleotide kinase (PNK) is also able to remove 3’phospate in addition 

to its 5’kinase activity [14]. If oxidised guanine (8-oxoguanine) forms mismatch base pair 

with adenine, it is processed by MYH, the E.coli homologue of MutY [8]. Interestingly it 

removes adenine and not 8-oxoguanine. Methylpurine-DNA glycosylase (MPG) shows a 

broader spectrum of substrate preference, it is able to cleave off a wide range of damaged 

purines, even undamaged purines at low rate [26]. Lastly, uracil, the focus and object of this 

dissertation, is removed by members of the uracil-DNA glycosylase enzyme family that could 

be categorised into at least 4 subfamilies: UNG, SMUG, TDG and MBD4 [14]. Some of the 

DNA glycosylases also have a mitochondrial isoform, which aim to counteract higher rate of 

oxidative damage present in the site of endogenous ROS production [27].  

DNA glycosylases need to search for DNA damages within the cell. Considering the 

frequency of damage occurrence in a human-sized genome, DNA glycosylases actually look 

for a needle in a haystack, when scanning DNA sequences. Sliding along one strand would 

not be sufficient on its own to explain the entire mode of damage locating. It is suggested that 

DNA glycosylases hop (microscopic dissociation and re-association) and slide (rotational 

diffusion) in order to monitor both strands accurately and use hopping for strand switching 

[28]. In E. coli, uracil-DNA glycosylase is dominated by hopping over long distances with 

local sliding contributing to damage recognition [28]. 

Despite the differences in the chemical nature of DNA damages corrected by different DNA 

glycosylases, they apply similar strategy for their recognition. They induce an extrahelical 

flipping of the damaged deoxynucleotide into a lesion-specific recognition pocket. All DNA 

glycosylases studied so far bind to the minor groove, bend DNA at the site of damage, and 

flip the lesion base out of the DNA major groove [2, 29]. The initial recognition apparently 

exploits the deformability of the DNA at a base pair destabilized by the presence of a lesion. 
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If the damaged base fits into the binding pocket, it can remain inside and can provide the 

necessary contacts and orientation for its excision. 

DNA glycosylases are relatively small (~30–50 kDa) monomeric proteins that do not require 

cofactors for their activity [30]. According to their enzymatic properties, two groups can be 

distinguished. The monofunctional glycosylases excise the substrate base, leaving an intact 

AP site [14]. In contrast, the bifunctional glycosylases have an additional lyase activity to 

cleave the DNA backbone on the 3' side of the AP site. Lyase activity is characteristic to 

DNA glycosylases specific for oxidized bases [14]. Mechanistic differences between the two 

group appear in the source of the nucleophile that attack sugar C1’ of the targeted nucleotide 

[31]. Monofunctional DNA glycosylases, such as uracil-DNA glycosylases and MPG, 

typically use an activated water molecule as a nucleophile [32]. In the case of bifunctional 

DNA glycosylases, OGG1, MYH, NTH and NEILs, the nucleophile is often an activated ε-

NH2 of a lysine or the N-terminal proline in the active site, which are also involved in the 

subsequent lyase reaction step [14, 24]. 

The release of altered bases is followed by abasic site repair initiated by AP endonuclease. 

There are two distinct families of hydrolytic AP endonucleases: exonuclease III- type (Exo 

III) and endonuclease IV-type (Endo IV) (Table 3) [33, 34]. Activity of Exo III members is 

dependent on Mg2+ but Endo IV acts in Mg2+-independent fashion [35, 36]. These latter are 

Zn-enzymes and employ tightly bound Zn ions within their active sites [37]. In E.coli, Exo III 

comprises the major AP endonuclease activity [38], while in the yeast S.cerevisiae Apn1, the 

endo IV homolog, does so [39]. In mammals, only members of the Exo III family have been 

identified (APE1 and APE2) [40, 41]. 

 

 

Table 3. AP endonucleases   Endo IV family Exo III famly 

E.coli  Endo IV  Exo III  
S.cerevisiae  Apn1  Apn2  
C.elegans  APN-1  EXO-3  
D.melanogaster  -  Rrp1  
H.sapiens  -  APE1, APE2 

 

 

 

 

 

 

As outlined previously, later steps of BER are gap tailoring, repair synthesis and ligation. 

Participants and mechanisms of these steps are not discussed in more detail in this summary 

of BER. 
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Mutations arisen due to base losses and modifications are implicated in cancer and ageing 

[11]. Although BER plays a major role in repair of such damages, the functional significance 

of BER in prevention of disease remains unclear. To date, only deficiencies of nucleotide 

excision repair (NER) and DNA mismatch repair (MMR) have been associated with diseases 

(xeroderma pigmentosum and Cockayne syndrome) and cancer. Experimental evidences 

indicate that lack of single DNA endonucleases would not give strong phenotype in mammals 

[42-44]. Mouse mutants and their embryonic fibroblasts lacking OGG1, NTH1 and NEIL1 as 

well as MYH are viable [45, 46]. Furthermore, nor dramatically increased cancer 

development, neither accelerated aging were observed [46]. One possible explanation for the 

lack of phenotype of the glycosylase mutants is that, unlike in NER or MMR, multiple 

glycosylases could substitute others in function because of their overlapping substrate range. 

Such back-up mechanism could be suggested for uracil-DNA glycosylases as well, of which 4 

representatives are present in mammals and 3 in Drosophila melanogaster. 
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Uracil-DNA glycosylases 

 

Uracil-DNA glycosylases catalyse the reaction of N- glycosylic bond cleavage of uracil in 

order to clear DNA from its presence [32]. Removal of uracil by members of uracil-DNA 

glycoslyases is important in life, enzymes with UDG activity were described in all domains: 

Archaea, Bacteria and Eukarya and also some viruses encode UDG [47]. Four subfamilies of 

UDGs have been characterised in more depth in Eukaryotes. These are UNG (uracil-DNA N-

glycosylase), SMUG (single-stranded selective monofunctional uracil-DNA glyscosylase), 

TDG (thymine-DNA glyscosylase) and MBD4 (Methyl-CpG binding protein 4) [32]. Table 4 

summarizes the presence of uracil-DNA glycosylase subfamilies in several model organisms. 

In mammals all the four UDG subfamilies can be found, while in Drosophila melanogaster 

UNG is missing. None of the UDG subfamilies is represented ubiquitously [48].  

 

 UNG SMUG TDG MBD4

E.coli  + - + -

S.cerevisiae  + - - -

C.elegans  + - - -

D.melanogaster  - + + +

H.sapiens  + + + +

Table 4 Presence/absence of UDG subfamilies in different model organisms 

 

Uracil DNA glycosylases are monofunctional enzymes, generating an abasic site in the 

initiation of the BER pathway [24]. Their common characteristic is that they possess the same 

α/β fold and similar overall structure, although having low sequence homology (8%), 

indicating that they have evolved from a common ancestor [49]. As differences in structure 

and sequences occur, distinct substrate specificity are associated with different uracil-DNA 

glycosylase subfamilies. In addition to uracil, they could repair other uracil-related lesions 

too, but the context of the lesion is a determinant factor. Although the physiological roles of 

these glycosylases are not fully defined, given their substrate preferences and their temporally 

and spatially separated occurrence, it is likely that each of these enzymes have evolved to 

fulfil specialised functions in genome maintenance. There has been much debate on their 

potential redundancy and overlapping functions [24]. 
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UNG is the most active among the uracil-DNA glycosylases (and also possibly the most 

widespread) [50]. It cleaves uracil residues when found in single strand, or double strand 

DNA paired with adenine or mispaired with guanine; however, only a small number of other 

pyrimidines are also targets [51]. It recognises uracil explicitly in an extrahelical 

conformation via flipping-out bases for sampling [29]. Selectivity of UNG towards uracil is 

achieved via tight shape of the substrate binding pocket and via a set of hydrogen bonding 

interactions [52]. In the active site two conserved residues, a catalytic asparagine and a 

histidine participate in the enzymatic reaction [52]. UNG is sensitive to inhibition by a 

specific bacteriophage PBS protein, UGI, which discriminates its activity from the activity of 

other uracil-DNA glycosylases [53]. The measured binding affinity of human UNG for uracil-

DNA showed an ssU>dsU:G>>dsU:A order in vitro [54]. It reflects that, on one hand, uracil 

in ssDNA is the most easily disrupted, and on the other hand, in duplex DNA, the less stable 

G:U mispair is more readily disrupted, than the Watson–Crick A:U base pair. However, it 

does not indicate that UNG would not favour the repair of A:U base pair. Moreover, current 

evidence suggests that UNG is the major enzyme responsible for the repair of uracil arising in 

DNA through dUTP misincorporation [32]. This idea is further supported by the fact that 

UNG is associated with the replication foci, site of DNA synthesis, where UNG2 co-localizes 

with PCNA and replication protein A (RPA) [55]. The specific role of UNG2 in the removal 

of misincorporated uracil has been demonstrated by utilising different experimental setups: 

first, inhibition of immediate post-replicative removal of incorporated uracil in isolated nuclei 

was achieved by neutralizing anti-UNG antibodies [55], second, removal of incorporated 

uracil in nuclei from UNG–/– mice was found to be slower than in wild type nuclei [56]. 

However, UNG also removes uracil from U:G mispairs produced by cytosine deamination in 

DNA. Lack of UNG in E.coli and in S.cerevisiae gives a mutator phenotype due to increased 

number of G:C to A:T transitions [57, 58]. Despite the fact that transgenic UGI-expressing 

human cells (UNG activity is inhibited) also exhibit a high frequency of spontaneous 

mutations [59], the ung -/- mice do not show either elevated mutation rate, or increased 

incidents of cancer development [56]. This finding argues for the existence of other backup 

enzymes in mammals. Redundancy, however, cannot explain the lack of phenotype in the 

ung-1 mutant of C. elegans, which is also viable and fertile, showing no adverse effect of lack 

of ung, since no other uracil-DNA glycosylase is encoded in C.elegans [60]. 
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UNG is the only uracil-DNA glycoslyase that also has a mitochondrial isoform. Two 

isoforms, UNG1 and UNG2, are expressed by alternative promoter usage and alternative 

splicing [61]. They possess different N terminal sequences responsible for subcellular 

localisation. UNG1 is targeted to the mitochondria, whereas UNG2 is found primarily in the 

nucleus. In the mitochondria, UNG1 is continuously present, as its expression is driven by a 

continuous promoter, while expression of UNG2 (nuclear isoform) varies with stages of cell 

cycle, UNG2 expression is turned on in S phase, when DNA replication occurs [62, 63]. It is 

also likely that the mitochondrial UNG1 has an important role in the repair of oxidized 

pyrimidines, and in oxidative stress response.  

Recent studies have revealed that UNG has an important role in antibody diversification. It is 

now established that UNG removes uracil residues in DNA generated by activation-induced 

cytosine deaminase (AID) as part of somatic hypermutation and class switch recombination 

processes in activated B-cells [64, 65]. 

 

SMUGs (single-strand selective monofunctional uracil-DNA glyscosylase) are only found in 

vertebrates and surprisingly in insects [66]. Repair roles of human SMUG1 were assessed by 

determining its damage specificity and cellular activity. Dual role was associated to SMUGs: 

on the one hand they repair uracil-DNA serving as a backup enzyme for UDG; on the other 

hand they are primary repair enzymes for a subset of oxidized thymines that are poorly 

recognised by other DNA glycosylases [67]. Therefore, in addition to deamination damage, 

SMUG is also involved in the repair of DNA oxidation damage [67]. Its name is misleading, 

because it is even more active on mispaired uracil in duplex DNA than in single stranded 

DNA [68]. In comparison with UNG, SMUG excises uracil from a single-stranded DNA 

context much less efficiently and it shows strong preference towards U:G mismatch instead of 

U:A basepair. According to in vitro activity measurements, SMUG removes uracil mispaired 

with guanine appr. 200 times faster than uracil paired with adenine within the same sequence 

context, indicating that hSMUG1 removes uracil arisen from cytosine deamination rather than 

from dUTP misincorporation [68]. SMUG: also excises a subject of oxidative base lesions 

either in ssDNA or in dsDNA [68]. These lesions are damage products of thymine methyl 

group oxidation, like 5-hydroxymethyl uracil (hmU), 5-formyl uracil (foU), 5-hydroxy uracil 

(hoU) and 5-carboxy uracil (caU) [67, 68]. All contain the oxidised group attached to the ring 

C5 position that is very important for damage selection by SMUG. The presence of 

hydrophilic group in C5 is one of the properties used for discriminating damaged pyrimidines 

from intact thymine. As intact thymine bears a hydrophobic methyl group at C5 position, 
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SMUG cannot accommodate it in its active site pocket [66]. The 3D structure of Xenopus 

laevis SMUG was determined for the protein complexed to free aberrant bases [52, 66], which 

provides exciting insights into catalytic and recognition mechanism of SMUG. It recognises 

aberrant bases in DNA via specific water bridged (U) or direct (hoU, hmU, foU) hydrogen 

bonds to the backbone amide NHs [69]. Similarly to UNG, an asparagine and a histidine 

residue (Asn85 and His239) are crucial for damage excising activity [66]. In respect of the 

SMUG active site, it also shares common characteristics with TDG concerning residues that 

lie near the C5 substituent of bases [66]. These residues participate in the coordination of 

damaged base via H bond formation. It binds tightly to abasic site-containing DNA following 

the removal of a target base, which causes inhibition of the subsequent enzymatic cycle and 

probably causes lower catalytic activity than UNG [68]. Contrary to UNG, SMUG can not be 

inhibited by UGI [70]. 

In vivo, SMUG is expressed during the whole cell cycle at similar levels, and its expression is 

not notably increased in proliferative tissues [70]. It acts to repair 5-hydroxymethyl uracil 

arisen from thymine oxidation and uracil arisen from cytosine deamination. It is therefore a 

backup enzyme for UNG activity indicated also by genetic evidences [70]. UNG-deficient 

mice embryo fibroblast cells show strong mutator phenotype only upon simultaneous 

knockdown of SMUG1 expression. Then increased frequency of transition mutations at C:G 

was observed [70]. 

 

Members of TDG and MBD subfamilies are much less efficient uracil DNA glycosylases 

than UNG or SMUG. Although there is no apparent amino-acid sequence similarity between 

the two groups, they share many common features. Both appear to act exclusively on duplex 

substrates, with a strong preference for mispaired pyrimidines, such as G:U and G:T, and a 

strong preference for damage located in CpG dinucleotides. (G:U may arise from cytosine 

deamination, and G:T from meC deamination.) Therefore their possible primary role is to 

maintain genetic integrity of CpG islands, hotspots for epigenetic regulation through cytosine 

methylation. 

TDG is related to a bacterial G:U-processing enzyme, mismatch uracil glycoslylase (MUG), 

although their substrate spectra are not equal [71]. The human TDG excises thymine from 

G:T and uracil from G:U mismatched substrates, whereas the E.coli Mug protein processes 

G:U substrate but fails to act on G:T mismatches with an appreciable efficiency [71]. Among 

eukaryotic TDG orthologs the common top substrate is the G:U mispair, however species-

specific substrate preference may vary according to the specific needs of the individual 
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species [71]. Neither the G:T processing activity nor the mismatch dependency of the proteins 

appear to be strictly conserved. By comparing the substrate specificity of TDG orthologs, 

hTDG (human TDG), Thd1 (TDG homolog of Drosophila melanogaster) and Thp1 (TDG 

homolog of Schizosaccharomyces pombe), it has been revealed that only the human enzyme 

processed G:T mismatch at a physiologically relevant rate [71]. For the Drosophila Thd1 G:T 

mismatch was a poor substrate and S.pombe Thp1 even refused to act on this substrate [71]. 

Contrary to the mammalian and Drosophila enzymes, Thp1 showed little preference for 

mismatched substrate and processed U:A or uracil in an ssDNA context with remarkable 

efficiency [72]. The differences in substrate specificity are consistent with sequence 

divergence. Above the previously discussed substrates, TDGs could also accommodate 

hypoxanthine (Hx) in their relatively loose substrate binding pocket, and mediates repair of 

G:Hx pairs [71]. 

Instead of asparagine and histidine residues, two asparagines are essential for the catalysis of 

the N-glycosylic bond cleavage. The TDG subfamily of UDGs is not inhibited by UGI [73]. 

Similarly to SMUGs, tight binding to the product AP-site causes practically complete product 

inhibition [71].  

TDG is not present throughout the entire cell cycle. It is absent from S-phase due to 

degradation by the proteasome system at the G1–S boundary [63]. Posttranslational 

modifications further modulate DNA repair function of TDG. Interplay between acetylation 

and phosphorylation was recently investigated [74]. Both modification could occur on 

adjacent residues in the amino-terminus and are mutually exclusive [74]. Remarkably, 

acetylation by CBP/p300 selectively abolishes G:T processing while phosphorylation by 

PKCα may preserve this function in vivo by preventing CBP-mediated acetylation [74]. 

Sumoylation, another posttranslational enzymatic modification of TDG has recently been 

described and characterized [74]. The SUMO conjugation at a unique K330 consensus site 

located within the C-terminal region of TDG. It is involved in a structural modification of the 

nearby active site and causes selective prevention of G·T mismatch repair. Consequently, 

acetylation and sumoylation direct similar effects [75]. 

Human TDG has furthermore been shown to have a functional role in transcription and 

epigenetic regulation. It interacts with the retinoic acid and estrogen receptor transcription 

factors and with SRC-1 regulatory molecule [76]. 

 

MBD4 (methyl-CpG binding protein 4), also known as MED1 (methyl-CpG-binding 

endonuclease 1), is a mismatch-specific G:T and G:U DNA glycosylase [77]. As its name 
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implies, MBD4 contains a methyl-CpG binding domain in N-terminal position and further 

more a C-terminal DNA glycosylase domain [78]. The methyl-binding domain most likely 

enhances the localisation of the DNA N-glycosylase activity to regions of the genome where 

5-methylcytosine levels are high and therefore, where meC-deamination occurs with highest 

frequency. Substrate spectrum of human MBD4 protein was described in more details, and 

revealed that it extends beyond G:T and G:U mispairs [78]. MBD4 also recognises and 

removes the uracil analogue 5-fluorouracil paired with guanine and thymine glycol (Tg) if 

paired with guanine, although efficiencies of these lesion removals are about half of that for 

removal of T:G [78]. Thymine glycol is a major replication-interfering lesion generated by 

reactive oxygen species, but it is also produced by deamination of 5-methyl-cytosine and then 

present as a Tg:G mispair [77]. A novel alternatively spliced form of the MBD4 DNA 

glycosylase was identified recently in HeLa cells, which lacks the methyl-binding domain but 

retains the glycosylase domain. Surprisingly, this shortened version of MBD4 possesses uracil 

DNA glycosylase but not thymine DNA glycosylase activity [79]. 

It is interesting that the function of MBD4 is quite similar to that of TDG, despite the 

complete lack of sequence homology [77]. Both contribute to mutation avoidance at 

methylated CpG dinucleotides. Mutagenic mechanisms involving 5-methylcytosine appear to 

be particularly common since methylated CpG dinucleotides are mutational hotspots in 

human genes, for example in the cancer-relevant p53 gene [77]. Experimental evidences 

argue for the protective role of MBD4 at these sites. In Mbd4 knockout mice, frequency of C 

to T transitions at CpG sites was increased by a factor of three; and on a cancer–susceptible 

background, lack of MBD4 has led to accelerated tumor formation indicating that MBD4 

suppresses CpG mutability and tumorgenesis in vivo [80]. 

In mammals, MBD4 function extends beyond sole DNA repair as it is involved in DNA 

damage response too. MBD4 deficiency could reduce the apoptotic response to DNA-

damaging agents [81]. It was shown that it interacts with the mismatch repair (MMR) specific 

MLH1 protein via its glycosylase domain [82] and MMR-dependent apoptosis is mediated 

through MBD4. In addition, normal apoptotic response to γ-irradiation, which is independent 

of Mlh1, is also reduced in MBD4 deficiency suggesting that the reliance upon MBD4 may 

extend beyond MMR-mediated apoptosis [81]. MBD4 has the ability to bind the Fas-

associated death domain protein (FADD) that could serve as further link to DNA damage 

induced apoptotic signalling and response [83]. 
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In summary, current view suggests that in mammals UNG and SMUG1 are the major 

enzymes responsible for the repair of the U:G mispairs caused by spontaneous cytidine 

deamination, whereas uracil arising in DNA through dUTP misincorporation is mainly dealt 

with UNG alone. In contrast, MBD4 (and possibly TDG) appear to have a more specialised 

function in correcting T:G mismatches that arise from deamination of 5-meC (especially in a 

CpG context) [80] (Figure 10, Table 5). 

 

 

 U:G 
 TDG U:A 
 MBD4 
 UNG 

 

 

 

 

 

Figure 10 Uracil is processed by different uracil-DNA glycosylases depending on its context 

in the DNA. 

 

 

 

UDG subfamily substrate specificity expression pattern interacting partners 

UNG ssU, A:U, G:U S phase specific    PCNA, RPA 

SMUG G:U, ssU, oxidised T whole cell cycle  

TDG G:U, G:T, G:Hx not present in S phase    CBP/p300, PKC 

MBD4 G:U, G:T, G:Tg whole cell cycle    MLH1, FADD 

Table 5 Characteristics of different uracil-DNA glycosylases 

U-ssDNA 

SMUG 
C deamination 

dUTP incorporation 
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The significance of nucleotide metabolism and dUTP incorporation 

 

Fine modulation of nucleotide pools is an important aspect of maintaining error-free DNA. 

Frequency of dUMP incorporation into DNA, thus appearance of U:A pairs, depends largely 

on the relative sizes of the intracellular dUTP and dTTP pools. dUTPase and thymidylate 

synthase (TS) are the two major factors responsible for the regulation of dUTP and dTTP 

levels. dUTPase (dUTP pyrophosphatase) catalyses the hydrolysis of dUTP into dUMP and 

pyrophosphate in the presence of magnesium ion. (Figure 11)  

 

 

 

Figure 11 The catalytic reaction of dUTPase: Formation of dUMP and pyrophosphate by the 

hydrolysis of dUTP. 

 

This reaction has a dual role within the cell. On one hand, it decreases the cellular dUTP 

level; on the other hand, it provides the precursor of dTTP biosynthesis by producing dUMP. 

Thymidylate synthase subsequently attach a methyl group to dUMP to produce dTMP, which 

is phosphorylated up to dTTP in two steps (Figure 12). Thus, dUTPase takes part in the 

regulation of the metabolism of two nucleotides (dUTP and dTTP) in one reaction, and 

consequently keeps dUTP/dTTP ratio at low level [84]. In eukaryotes, there exist three 

possible routes of dTMP, thus dTTP biosynthesis. These all contribute to the regulation of 

dTTP level (Figure 12). First, as above described, dUTPase with thymidylate synthase can 

produce dTMP, second, dTMP is produced by consecutive reaction of dCMP deaminase and 

thymidylate synthase. Last, thymidine kinase could generate dTMP from thymidine (dT). 

dUTPase, dCMP deaminase and thymidylate synthase take part in the de novo pathway of 

thymidylate metabolism, while thymidine kinase is a key enzyme of the salvage pathway. Due 

to the complex regulation of nucleotide levels, the cellular dUTP/dTTP ratio varies around  

10-2-10-3 [85], depending on cell type and cell cycle stage. However, despite this precise 

regulation, incorporation of uracil into DNA due to the use of dUMP instead of dTMP by 

DNA polymerases is still the most common type of endogenous DNA damage. 
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DNA

dCTP dUTP dTTP 

 

Figure 12 Biosynthetic pathways of pyrimidine deoxyribonucleotides  

 

Upon misregulation, dUTP/dTTP ratio is elevated; therefore dUTP can be incorporated into 

DNA with high frequency [86]. Repetitive futile attempts of the DNA repair mechanism to 

eliminate high number of uracil would result in multiple DNA single strand breaks, 

chromosome fragmentation and cell death. This process was termed as thymineless cell death 

[87, 88]. Some widely used chemotherapeutic agents (e.g., thymidylate synthase inhibitors 

such as fluoro-uracil and fluoro-uracil derivatives) were suggested to utilise a similar 

mechanism by targeting thymidylate metabolism and causing extreme depletion of dTTP pool 

[89].  

Significance of dUTPase in thymidylate metabolism is further demonstrated by the fact that 

expression level of dUTPase is in correlation with response to thymidylate synthase inhibitor 

chemotherapy. High nuclear dUTPase expression is associated with poor response, shorter 

time to progression, and poorer survival. Conversely, low nuclear dUTPase level is associated 

with response to chemotherapy, longer time to progression, and greater overall survival [90]. 

dCMP 
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The significance of dUTPase 

 

dUTPase is essential for all organisms, especially in replicating cells. Lack of dUTPase leads 

to thymineless cell death, as a consequence of UNG induced DNA repair. Lethality upon 

disruption of dUTPase function was reported in E.coli, S.cerevisiae and C.elegans [91-93]. 

Viability and adverse effects of absence of dUTPase could be restored when the ung gene is 

disrupted simultaneously. It therefore indicates that uracil removal was the major cause of 

lethality. In S.cerevisiae a viable, but mutant allele of DUT (dUTPase) gene was also 

identified. This mutant strain showed growth delay and cell cycle abnormalities and exhibited 

a mutator phenotype [94]. Similar consequences of dUTPase depletion were observed in 

C.elegans, however lack of clk-2 checkpoint gene could also rescue lethality and 

developmental defects [93]. Furthermore, clk-2 -/- could eliminate cell-cycle arrest and 

apoptotic response given for dUTPase silencing. These data indicate that CLK-2 dependent 

DNA damage response pathway is activated after uracil incorporation into DNA. Due to 

persistent uracil removal, intermediates and/or single-stranded DNA are formed, which 

induce apoptosis via DNA damage response pathway. This observation extends our previous 

hypothesis about thymine less cell death, that DNA fragmentation would induce cell death. 

Moreover, in the absence of the CLK-2 checkpoint repair intermediates are tolerated in 

C.elegans [93]. 

 

The impact of dUTPase and precise regulation of dUTP/dTTP pool are also regarded as 

preventive DNA repair mechanism. Elevated level of uracil in DNA was detected in dut- ung- 

E.coli [95]. The CJ236 strain E.coli lacks both dut (dUTPase) and ung gene, thus it is viable, 

but contains 3000-8000 uracil/106 nucleotide and shows increased mutation frequency due to 

absence of UNG. This number is extremely high, if compared to uracil content of wild type or 

UDG mutant E.coli strains. In wild type E.coli, uracil occurs at a rate below 1/106 nucleotide, 

while the CY11 mug-, ung- strain accumulates 23-33 uracil/106 nucleotides. If the CY11 

strain was treated with thymidylate synthase inhibitor (5-fluoro-2-deoxyuridine), de novo 

synthesis of dTMP was irreversibly blocked, resulting in a 3,3-4 fold increase over untreated 

cells in the amount of uracil. This level, although high enough, is still far from the level 

reached in the dut-, ung- strain [95].  
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Human dUTPase and Drosophila dUTPase: similarities and differences 

 
Most dUTPases, including also the human and Drosophila orthologs, are homotrimer proteins 

and they contain three identical active sites for dUTP hydrolysis [96]. The structure of 

dUTPase is evolutionary well-conserved, active sites are located at the subunit interfaces and 

are comprised of five different conserved motifs of the three monomers [96].  

Two isoforms of human dUTPase were identified in human cells, which are encoded by the 

same gene, but arise from alternative promoter usage and alternative splicing of 5’ exons [97]. 

Thus the two isoforms are largely identical, differing only in a short region of their amino-

terminal sequences, which contain distinct localisation signals for both isoforms. 

Consequently the two isoforms are targeted to different compartments of the cell where DNA 

synthesis could occur, thus to nucleus and to mitochondria [97]. The one found in the nucleus 

(DUT-N), contains a nuclear localisation signal [98], and its expression level is upregulated 

during S phase of cell cycle, during nuclear DNA replication. dUTPase expression was 

increased in actively dividing cells, while it was hardly detectable in resting cells [97]. In 

contrast to this, the mitochondrial isoform (DUT-M) is constitutively expressed [97]. 

Consensus site for cyclin dependent kinase phosphorylation was identified within the amino 

terminal region of both DUT-N and DUT-M both isoforms, however this posttranslational 

modification was found to be exclusive for DUT-N in vivo, affecting Ser11 residue [99]. In 

vitro, cdc2 kinase is capable to phosphorylate Ser11 suggesting a link to the cyclin signalling 

pathway [99]. Phosphorylation of NLS or other sequences nearby could regulate the 

localisation of certain proteins, although such effect of Ser11 phosphorylation for DUT-N was 

not reported in the literature. 

Drosophila melanogaster cells also contain two dUTPase isoforms, generated by alternative 

splicing, but these are both expressed under the control of the same cell-cycle-dependent 

promoter, and both are therefore present only in actively dividing cells [100]. The two 

isoforms (21kDa and 23kDa) form homotrimer proteins associated with 63kDa and 69kDa 

apparent molecular masses respectively, and are termed as long (23kDa) and short (21kDa) 

isoform. Between these two, only the long (23kDa) contains the complete putative NLS 

sequence (10PAAKKMKID18), while the short isoform (21kDa) lacks the N-terminal fourteen 

residues, thus lacks the PAAKK peptide segment of the putative NLS. The short isoform also 

lacks any detectable localization signal, and its presence could not be detected in 

mitochondrial cell fraction [100]. 
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(Figure 13) Surprisingly, localisation studies carried out with ovaries, embryos and larvae; 

immunohistochemistry and Western blotting of nuclear, cytoplasmic and mitochondrial 

extracts indicated that both Drosophila dUTPase isoforms can be present either in the nucleus 

or in the cytoplasm in different tissues and developmental stages preventing clear assignment 

of the two isoforms to distinct dedicated cellular compartments [100].  

 

 

Figure 13 Two isoforms of Drosophila melanogaster dUTPase. Both isoforms contain a     

28-residue-segment at the C-terminus that is found only in the Drosophila dUTPases. 

 

Nuclear localisation signal sequence of dUTPase 

 

Both, the experimentally verified nuclear localisation signal observed in nuclear isoform of 

human dUTPase and the putative NLS of Drosophila dUTPase N-terminal sequence are rather 

unusual but show similarity to human c-myc and RanBP nuclear localisation signals [100]. 

These NLSs represent members of a distinct NLS class, where a short cluster of basic residues 

is flanked by neutral and acidic amino acids. The Drosophila dUTPase NLS also resembles 

the previously described human dUTPase NLS and human RanBP3 NLS as it contains only 3 

positively charged amino acids in the middle of the NLS motif [98, 100].  

 

Life cycle of Drosophila melanogaster 

 

Drosophila melanogaster belongs to Holometabola Superorder (Endopterygota) of Insecta 

Class. Classification of these insects is based on, inter alia, characteristics of their life cycle 

and development, representing an insect group which develops through holometamorphosis, 

associated with embryo, larvae, pupae, and imago stages, separated with events of eclision. 
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After the third larval stage, development is continued by puparium formation. In pupae stage, 

during metamorphosis, larval tissues are degraded and tissues of imago are formed. 

Breakdown of larval tissues are found to occur via regulated cell death pathways, such as 

apoptosis and autophagy. Imaginal tissues (discs), group of tissues and cell islets that 

preserved their differentiation potential during larval stages, serve as a source of adult tissues. 

An obtrusive difference between larval and imaginal tissues is that DNA in larval tissues goes 

though cycles of endoreplication, repeated cycles of DNA synthesis without mitosis, while in 

imaginal cells DNA replication is followed by mitotic cycle. Consequently, endoreplication 

gives rise to polythene chromosomes, for example giant chromosomes of larval salivary 

gland, but the genome of imaginal disc preserves its diploid state throughout larval stages. 

With respect to diploidy, neural cells are similar to imaginal discs. 

 

Specific attributes of uracil repair in Drosophila melanogaster 

 

Drosophila melanogaster represents a unique model organism for uracil-DNA targeted 

research, because the major and most active uracil-DNA glycosylase, UNG is not encoded 

within the genome. Therefore UNG activity, which would be responsible for repairing U:A, 

U:G and uracil in single stranded DNA in both nuclear and mitochondrial DNA is missing. 

Even though UNG is missing, homolog for SMUG-type uracil-DNA glycosylase protein is 

encoded, which otherwise was only reported from Vertebrates [66]. TDG and MBD4 

homolog sequences could be also identified in the Drosophila genome. Substrate preference 

of Thd1 (Drosophila TDG) tends to show a shift towards G:U repair and it is less active on 

G:T mispairs [71]; however metC/C ratio is approximately 50 times lower in Drosophila than 

in mammals indicating that DNA is less intensively methylated in Drosophila [2]. Thus G:T 

mispairs might require less attention of DNA repair pathways.  

 

dUTPase, key factor in preventive uracil-DNA repair, was found to be present with decreased 

protein level during larval stages, furthermore dUTPase was under detection limit in larval 

tissues, and was only expressed in imaginal tissues [100]. These recent findings have provided 

the basic question and working hypothesis for this piece of work.  

As seen previously, uracil content of DNA is remarkably increased in dut-ung- E.coli cells, 

due to lack of uracil repair and high level of dUTP incorporation [95]. Similar situation, thus 

elevated level of uracil in DNA, could be envisioned in Drosophila larval tissues. Presence 

and absence of dUTPase, therefore putative uracil accumulation in Drosophila genome could 
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be associated with cell fate during metamorphosis. Larval tissues lacking dUTPase 

expression, possibly with higher uracil content, are predestined to death; in contrast to this, 

dUTPase expressing imaginal tissues, with normal level of uracil survive and develop. 

Correlation observed between presence of dUTPase and cell fate has raised the possibility that 

uracil content of DNA may have an impact on development [100]. According to my working 

hypothesis, uracil accumulated in DNA might be targeted for DNA breakdown during 

metamorphosis, thus a uracil-DNA degrading mechanism, similar to thymineless cell death, 

could take part in development of fruitfly supplementing the well-described apoptosis and 

autophagy pathways.  

 

Absence of UNG from mitochondria is coupled with the absence of mitochondrial dUTPase 

isoform [100]. In other model organisms, constitutively expressed mitochondrial isoform of 

UNG is responsible for mitochondrial uracil repair, and mitochondrial dUTPase isoform 

ensures the correct dUTP/dTTP ratio. In theory, lack of dUTPase in mitochondria would not 

coexist with presence of highly efficient UNG. Details of mitochondrial uracil-DNA repair 

are underrepresented in literature for discussion in more depth. As 21kDa isoform of 

Drosophila dUTPase was predicted to stay in the cytoplasm, further investigations were 

required to describe its role. 
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Aims 

 

The present study aimed to investigate aspects of uracil-DNA in Drosophila melanogaster 

and to achieve the followings: 

 

1) Verifying the putative nuclear localisation signal, and describe the subcellular localisation 

of two dUTPase isoforms. 

 Identification of putative NLS segment conserved among dUTPases 

 Cloning of dUTPase-eYFP fusion protein constructs into Drosophila Schneider 2 cell 

line-specific inducible expression vector 

 Creating stable expression system for dUTPase-YFP constructs in Schneider 2 

Drosophila cell line and follow their distribution within the cell 

 Tracking localisation of dUTPase isoforms in Drosophila embryo with special 

emphasis on mitosis 

2) Investigate cellular response to uracil-DNA in Drosophila cell culture 

 Examining cellular response to uracil substituted plasmid DNA 

 Analysing cellular response to misregulated dUTP/dTTP ratio 

3) Investigate cellular response to uracil-DNA in fruitfly 

 Examining cellular response to uracil substituted plasmid DNA in embryo 

 Creating an RNAi system for dUTPase in larvae and pupae 

 Describing phenotype of dUTPase silencing 

4) Measuring uracil content of Drosophila biological samples 

 Recording changes of uracil content during development 

 Comparing uracil-DNA level in larval and imaginal tissues 

 Measuring uracil content in response to dUTPase RNAi and misregulation of 

dUTP/dTTP ratio 
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Materials and methods 

 

1. Methods used for verifying the putative nuclear localisation signal, and describe the 

subcellular localisation of two dUTPase isoforms 

 

Culturing Drosophila Schneider 2 cells 

The Drosophila Schneider 2 (S2) cell line was derived from a primary culture of late stage 

(20-24 hours old) Drosophila melanogaster embryos [101]. It comprises cells of different 

origin: epithelial-like cells as well as macrophages are both present. 

S2 cells grow at room temperature without CO2 in a loose, semi-adherent monolayer in tissue 

culture flasks. If maintained at 25-28°C, they divide once in every 24 hours. It is suggested to 

pass S2 cells when cell density has reached 5x106 cells/ml and split at a 1:2 to 1:5 dilution. 

Importantly, S2 cells do not grow well when seeded at density below 5x105 cells/mL. The 

culture media used were serum free medium (Gibco) supplemented with 20 mM L-glutamine, 

10 U/mL penicillin, 0.1 mg/mL streptomycin (Sigma). 

 

Cloning of dUTPase-eYFP fusion protein constructs 

pRmNDUT-eYFP (21 kDa dUTPase) and pRmDUT-eYFP (23 kDa dUTPase) vectors were 

constructed by cloning 21 kDa and 23 kDa dUTPase coding sequences into the Drosophila 

transfection vector pRm-eYFP-N-C* [102]. The pRmDUTeYFP and pRmNDUT-eYFP 

constructs produce dUTPase with a C-terminal eYFP (enhanced yellow fluorescent protein) 

under the control of a metallothionein promoter. The metallothionein promoter contains a 

heavy metal shock response element, therefore administration of heavy metal ion, in our case 

Cu2+ switch on the expression of the encoded protein. 

 

The LDdut-pET22b plasmid was used as a template for amplification of D. mel. dUTPase 

gene by PCR. The PCR was performed with two different forward primers and a single 

reverse primer (Table 6). These primers introduce a NheI site upstream and a NotI site 

downstream of the gene, which was used for directional insertion into the target vector. The 

sequences of plasmids were verified by sequencing. (MWG-operon, Germany)  
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5’-ctagctagcatgccatcaaccgatttcgccgacattc-3’ 23kDa NheI Forward primers 

5’-ctagctagcatgaagatcgacacgtgcgtcctgcg-3’ 21kDa NheI 

Reverse primer 5’-atagtttagcggccgcgtagcaacaggagccggagc-3’ both NotI 

Table 6 Primers used for cloning of 23kDa and 21kDa dUTPase isofom into pRm-eYFP-N-C* 

 

S2 cell culturing, transfection and selection 

For stable transfection of S2 cells, dUTPase-eYFP expression constructs were cotransfected 

with pPURO plasmid in 1:20 molar ratio. pPURO plasmid encodes puromycin resistance 

gene. Transfection was carried out in the presence of Cellfectine. Stable cell lines were 

selected by growing them in the presence of increased concentration of puromycin. The final 

puromycin concentration was 50μg/mL. 

 

Localisation of dUTPase-YFP in S2 cells 

For investigating the subcellular distribution of dUTPase isoforms, dUTPase-eYFP, DNA and 

actin were visualized. Selected S2 cells were cultured on microscope slides. Expression of 

dUTPase-eYFP constructs was induced at 25°C by addition of 700 μM CuSO4 and overnight 

incubation. Cells were washed with PBS, fixed in 3% paraformaldehyde for 5 minutes, and 

permeabilized with 0.1% Triton-X 100. DNA was stained with DAPI (Sigma) and actin was 

labeled with rhodamine –phalloidine. Samples mounted in FluorSave Reagent (Calbiochem) 

were visualized with Olympus IX70 confocal laser scanning microscope, under a 60× oil 

immersion objective. 

 

Microinjection of S2 cell extract into Drosophila embryo, confocal microscopy 

Localisation of dUTPase throughout complete cell cycle was investigated in Drosophila 

embryos. Drosophila embryos in the syncytial blastoderm stage (app. 2h after egg laying, 

cycles 10-13) offer a particularly useful model to study mitosis, because in this stage mitotic 

events are strongly synchronized within the embryo and nuclei are large enough for 

convenient visualisation.  

S2 cell extract, prepared from cells expressing dUTPase-eYFP fusion proteins, was injected 

into Drosophila embryos for these localisation studies. 

 

After overnight induction of dUTPase-eYFP expression, S2 cells were washed off by 

pipetting and washed in PBS. Cell pellet was homogenized on ice in equal volume of lysis 
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buffer (150 mM NaCl, 10% glicerin, 10 mM Tris pH 7.4, 1 mM DTT, protease inhibitor), 

than lysate was cleared by centrifugation (14300 rpm, 15 min, 4˚C). Rhodamine-tubulin was 

added to the S2 cell extract in order to follow dynamics of microtubule assembly related to 

nuclear divisions. Approximately 200 picoL of freshly prepared cell extract supplemented 

with rhodamine-tubulin (2% of total egg volume) was injected into the posterior region of 

wild-type (Oregon R) embryos at syncytial blastoderm stage (cycles 10-13). Embryos were 

dechorionated in 3% sodium hypochlorite before injection. Localisation of the two dUTPase 

isoforms were followed separately over time by series of optical sections generated with an 

Olympus VS1000 confocal microscope. The injections were carried out at 20°C. Localisation 

studies in Drosophila embryos were done in collaboration with Prof. János Szabad and Zsolt 

Venkei in Szeged. 

 

2. Methods used for investigating cellular response to uracil-DNA in Drosophila cell 

culture 

 

Culturing Drosophila Schneider 2 cells (described previously) 

Here, the culture media used were Serum Free Insect Medium (Sigma, S3777) supplemented 

with 10 Unit/mL penicillin and 0.1 mg/mL streptomycin (Sigma). 

 

Culturing human HeLa cells 

Human HeLa cell line was propagated from cervical cancer cells. It grows well in 5% CO2 at 

37°C. For experiments described here, HeLa cell was maintained in DMEM-F12 culture 

media (Sigma, D8437) supplemented with 10% FBS and 1% penicillin–streptomycin solution. 

Studies on HeLa cell culture were carried out by András Horváth and Gábor Merényi. 

 

Alamar blue assay for determining the effect of 5’-fluorouracil and 5'-

fluorodeoxyuridine 

The drug 5’-fluorouracil (5’FU) and 5'-fluorodeoxyuridine (FUdR) are frequently used as an 

inhibitor of thymidylate metabolism. Treatment leads to perturbation of nucleotide levels and 

induces elevated level of dUTP, thus major increase in the uracil content within DNA. Effect 

of 5’FU and FUdR on S2 cells therefore indicates cellular response given to elevated level of 

uracil in genomic DNA in Drosophila cells. For comparison, treatment was also applied to 

mammalian cells. 
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Alamar blue is wildly used reagent for the analysis of cell proliferation and cytotoxicity in 

response to certain drug treatment. It gives an indirect measure of cell viability by exploiting 

the natural reducing power of living cells to convert resazurin to resorufin. Resazurin is a cell 

permeable reagent that is blue in color and nonfluorescent. Upon entering cells, resazurin is 

reduced to resorufin, which produces very bright red fluorescence. Viable cells continuously 

convert resazurin to resorufin, thereby the amount of fluorescence produced is proportional to 

the number of living cells. 

 

Drosophila Schneider 2 (S2) cells and human HeLa cells were cultured in 96 well plates at 

5×104cells/well or 2×103 cells/well, respectively, with appropriate drug treatment in a final 

volume of 100 μl/well. 5’-fluorouracil (Sigma) and 5'-fluorodeoxyuridine (FUdR) was added 

at a final concentration range of 0.1–1000 μM. After 96 hours in culture, cell viability was 

quantified by Alamar Blue assay (BioSource). Assay was performed according to the 

manufacturer’s protocol: Alamar Blue solution was directly added to the medium in a final 

concentration of 10 %, followed by a 4 hours period of incubation, then absorbance was read 

at 540 nm. The number of viable cells correlates with the magnitude of dye reduction. Data 

was normalized with the absorbance of control, lacking 5’-fluorouracil treatment cells. The 

experiment was repeated in triplicates. 

 

U-plasmid interpretation assay in cell culture 

Uracil-DNA specific cell response was provoked by transfecting cells with exogenous 

plasmid uracil-DNA in order to decide whether such chemically unusual DNA may be 

tolerated and interpreted in Drosophila cells. 

 

Fluorescent protein encoding plasmids, pRm-eYFP-N-C* for S2 cells, pDsRed-Monomer-N1 

(Clonetech) for HeLa cells were amplified in E.coli K12 XL1Blue strain and CJ236 ung-, dut- 

strain (NEB), producing normal DNA plasmid and dUMP-substituted version of the construct 

(U-plasmid) respectively. Plasmids were purified with Plasmid Midi Kit (QIAGEN). Uracil 

content of the plasmids was checked with UDG and AP endonuclease treatment followed by 

standard agarose gel electrophoresis. 

Transfection of pRm-eYFP-N-C* into Drosophila Schneider 2 cells was carried out in the 

presence of Cellfectine (Invitrogen) and expression was induced from the metallothionein 

promoter by addition of 700µM CuSO4 and overnight incubation. pDsRed-Monomer-N1 was 
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transfected into HeLa cells by using Lipofectamine (Invitrogen). Samples were visualized 

with a Leica DMLS fluorescence microscope.  

Barbara Hodoscsek undergraduate student also contributed to this work. 

 

3. Methods used for investigating cellular response to uracil-DNA in fruitfly 

 

U-plasmid interpretation assay in Drosophila embryo 

Uracil-DNA plasmid interpretation assay was carried out in Drosophila embryo similarly to 

the cell culture reporter assay. These experiments were made in collaboration with Miklós 

Erdélyi, BRC, Szeged.  

 

Uracil-DNA plasmid was introduced to Drosophila embryo by microinjection. Three different 

experimental setups were tried out, differing in plasmid DNA and Drosophila strain. Table 7 

summarises the plasmid-Drosophila pairs. 

 

Drosophila strain (embryo)  Plasmid 

nosGal4 transgene UASp-GFP 

wild type Act-GFP 

UASp-GFP transgene Promoter-Gal4VP16 

Table 7 

 

Plasmids were amplified in E.coli K12 XL1Blue strain and CJ236 ung-, dut- strain (NEB), 

and purified with Plasmid Midi Kit (QIAGEN). 

For each experiment, app. 40 0-30 min dechorionated embryos were microinjected. They 

were aligned on a glass coverslip, dried for 30 min, than covered with 10S Voltalef oil before 

injection. Plasmid concentration was adjusted to 1mg/mL, by dilution in standard injection 

buffer. 

GFP signal would have indicated the interpretation of exogenous DNA. GFP signal was 

detected in pre-hatching embryos, 22h after injection. 
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Gal4/UAS system 

Gal4/UAS system is widely used for addressing gene function in vivo and for its flexible 

application it was called as the “Fly Geneticist’s Swiss Army Knife”. It allows ectopic gene 

expression in a wide variety of cell- and tissue-specific patterns in Drosophila [103].  

It consists of two components: Gal4 and UAS (Figure 14). A promoter drives the expression 

of Gal4 yeast transcriptional activator and a Gal4-responsive UAS (Upstream Activating 

Sequences) enchancer element directs the expression of gene of interest. Initially, the two 

components are encoded in two different transgenic fruitfly lines. In the Gal4 line, also called 

as driver, Gal4 has no target gene to activate. In the UAS-line, the target gene is silent 

because of lack of activator Gal4. It is only when the Gal4 line is crossed to the UAS–target 

gene line that the target gene is turned on in the progeny and it is expressed under the spatial 

and temporal control of Gal4’s promoter. Depending on the driver, effect of a variety of 

expression pattern can be tested [103]. 

 

 

Figure 14 Gal4/UAS expression system in Drosophila. Figure was reproduced after Brand et 

al. with minor modifications [104]. 
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RNA interference 

In general RNA interference (RNAi) leads to silencing of a certain gene by reducing its 

mRNA level available for translation. In Drosophila melanogaster, RNAi can be induced 

with long double stranded RNA, typically 300-400bp in length. Contrary to mammalian 

systems, short interfering RNAs (siRNA), 21-23bp, are not efficient in Drosophila. 

Transgenic Drosophila melanogaster strains for dUTPase silencing were purchased from 

Vienna Drosophila RNAi Center (VDRC). Each strain contains an inducible UAS-RNAi 

construct against the dUTPase. The generic GAL4/UAS system is used to drive the 

expression of a hairpin RNA (hpRNAs), which are encoded as inverted repeat sequences (IR) 

[105]. The emerging double-stranded RNAs are processed by Dicer into siRNAs which direct 

sequence-specific degradation of the target mRNA. By using different Gal4 drivers, effect of 

silencing could be followed separately in different tissue and cell types as well as in different 

developmental stages. 

RNAi was induced against dUTPase mRNA by using Act5C-Gal4 /Cyo, GFP GMR-Gal4 and 

engrailed-Gal4/CyO, GFP drivers. Act5C-Gal4 causes ubiquitous expression of GAL4. 

Drivers GMR-Gal4 and engrailed-Gal4/CyO are imaginal disc-specific, active in eye and 

wing discs respectively. 

 

Silencing was induced by crossing UAS-IR males to virgin females carrying adequate drivers. 

Progeny were raised at 25°C. For Act5C-Gal4 /Cyo, GFP, they were scored according to GFP 

marker in larvae or Cyo wing marker in imago. Animals lacking GFP and Cyo wing markers 

express the IR construct thus silence dUTPase (Figure 15). Reduced number of hatched non-

Cyo imago as compared to the number of Cyo imago indicates the importance of silenced 

gene for development. Progeny of GMR-Gal4 x UAS-IR and engrailed-Gal4/CyO x UAS-IR 

crossings were subjected to careful observation with stereo microscope. 

 

In order to test the effect of ubiquitous Gal4 expression, wild type (w1118) males were also 

crossed to ActGal4/Cyo, GFP virgins and segregation ratio was assessed.  
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Figure 15 dsRNA expressing animals are distinguishable at larvae and imago stages on the 

basis of GFP and CyO markers  

 

For #21883 and #21884 Drosophila strains, insertion site of the P-element, containing the 

UAS-IR sequence, was determined by inverse PCR and sequencing according to BDGP 

(Berkeley Drosophila Genome Project) protocol. Data would further confirm that the 

observed phenotype is truly a consequence of dUTPase silencing and would exclude the 

possibility that change in expression of UAS-IR insertion neighbouring genes would have 

caused it. 

Genomic DNA prepared from ~15 adult flies, was digested with MspI restriction enzyme and 

fragments were circularised in a ligation reaction. For inverse PCR, three different primer pair 

combinations were tried out: /Plac1, Pwht1/, /Pry1, Pry4/ and /Pry1, Pry2/ which amplified 

5’or 3’ flanks of insertion. PCR products were purified from agarose gel with QIAquick Gel 

Extraction Kit (QIAGEN) and sent fro sequencing (MWG-Operon). 

 

Name Sequence Application 
Plac1 CACCCAAGGCTCTGCTCCCACAAT inverse PCR 
Pry1 CCTTAGCATGTCCGTGGGGTTTGAT inverse PCR 
Pry2 CTTGCCGACGGGACCACCTTATGTTATT inverse PCR, sequencing 
Pry4 CAATCATATCGCTGTCTCACTCA inverse PCR 
Pwht1 GTAACGCTAATCACTCCGAACAGGTCACA inverse PCR  
3.SUP.seq1 TATCGCTGTCTCACTCAG sequencing 
5.SUP.seq1 TCCAGTCACAGCTTTGCAGC sequencing 

Table 8: Primers used for determining sequences flanking UAS-IR (DUT) insertions 
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Stock # Source Descripition 

#21883 VDRC dUTPase RNAi, UAS- dut IR expression 

#21884 VDRC dUTPase RNAi, UAS- dut IR expression 

- BRC actin-Gal4/CyO, ubiquitous driver 

- lab actin-Gal4/CyO GFP, ubiquitous driver 

- BRC GMR-Gal4, eye disc specific driver 

- BRC engrailed-Gal4/CyO, GFP, wing disc specific driver 

OregonR BRC wild type 

w1118 BRC white eye, wild type 

Table 9. D.melanogaster stocks for dUTPase RNAi 

 

Efficiency of silencing was determined by performing western blot with anti-dUTPase 

polyclonal antibody on 3rd stage larvae and pupae samples. 

 

Western blot 

Extracts were run on 12% SDS-PAGE and transferred to PVDF membrane in 10mM CAPS, 

10% methanol transfer buffer. Blots were stained first with Ponceau protein dye and then 

developed with anti-dUTPase polyclonal antiserum (1:100000 dilution) and anti-rabbit IgG-

HRP secondary antibody (1:2,500 dilutions). For visualization, enhanced chemiluminescence 

reagnet of Amersham Biosciences was used. Monoclonal anti-actin antibody (Sigma) in was 

used as loading control. 

 

Creating ActGal4/Cyo,GFP Drosophila melanogaster stock 

GFP marker was essential to discriminate silenced and non-silenced progeny during larval 

stages. For obtaining an actin-Gal4/CyO GFP stock, balancer chromosome of actin-Gal4/CyO 

was changed to CyO GFP second chromosomal balancer chromosome. This was achieved by 

two crosses: first, engrailed-Gal4/CyO, GFP x w1118 generates +/CyO, GFP progeny which 

has white eye and curly wing phenotype, second +/CyO,GFP x actin-Gal4/CyO generates 

actin-Gal4/CyO GFP (red eye and curly wing) 

 

Maintaining Drosophila melanogaster 

D.melanogaster was cultured at 25˚C or 18˚C on cornmeal, dextrose and yeast medium. 
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4. Method used for measuring uracil content of Drosophila biological samples 

 

In order to quantify uracil content of DNA, a real-time quantitative PCR-based assay was 

developed recently by my colleague, András Horváth, Laboratory of Genome Metabolism and 

Repair. It measures the amount of uracil within a selected DNA sequence. The sequence-

specific manner of this technique is unique among other methods developed for quantifying 

uracil content. 

 

The technique is based on two separate quantitative PCR reactions where two different types 

of DNA polymerases are used. The wild type enzyme Pfu from Pyrococcus furiosus (species 

of Archaea) selectively accepts uracil-free DNA template only. If Pfu detects uracil in the 

template strand, it stops the DNA synthesis. This enzyme is used to determine the amount of 

uracil-free template. A variant of Pfu DNA polymerase, where the uracil binding pocket was 

mutated, is not sensitive to uracil; therefore it is capable to amplify all DNA templates. The 

amount of uracil containing template can be calculated from the number of uracil free-DNA 

template and from the number of the total amount of DNA template. The amount of uracil 

containing template, and the length of template sequence can determine the chance for a 

single nucleotide being uracil, if an assumption is taken that there is only one uracil in every 

uracil containing template. 

In all measurements, uracil content of a DNA sample is correlated to a reference DNA sample 

which is considered to be uracil-free. For most measurements plasmid DNA or genomic DNA 

from Drosophila embryo was used. 

 

DNA preparation 

Genomic DNA was isolated by using MasterPure DNA Purification Kit (Epicentre). DNA 

was subsequently digested with NheI (New England Biolabs) restriction enzyme at 37˚C, 

overnight. DNA was run on 1% agarose gel electrophoresis and fragments of 4000-5000 

nucleotides in size were purified from gel with QIAquick Kit (Qiagen). Fragmentation and 

size selective fragment purification enriches the targeted DNA sequence within the DNA 

sample. 
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qPCR 

Real-time PCR reactions were performed in Mx3000P qPCR System (Agilent Technologies, 

Stratagene) in plates, 96-well format using EvaGreen dye (Biotium) to monitor amplification. 

In our experimental setup, a segment with 963 base length defined by the primers 

(puBSd985R and puBSd-Fw) is amplified during the PCR reaction. 

Two-fold dilution series were prepared from DNA samples. Instead of working in triplicates, 

each step of serial dilution served as parallel measurement. For all samples, reaction mixture 

with PfuTurbo Hotstart DNA polymerase (uracil-sensitive) (Stratagene) and with Pfu Turbo 

Cx Hotstart DNA polymerase (uracil-nonsensitive) (Stratagene) was set up. (Table 10) 

 

1 μl DNA 

1 μl PfuTurbo Hotstart DNA polymerase buffer 10x 

0,5 μl EvaGreen 50x 

0,2 μl dNTPmix (10mM) (Fermentas) 

0,175 μl forward primer 10 pmol/μl 

0,175 μl reverse primer 10 pmol/μl 

0,01 μl ROX (passive reference dye) 

6,75 μl nuclease free water (Ambion) 

0,2 μl PfuTurbo Hotstart DNA polymerase (wt/Cx) 

1x 2 min 95 °C 
15 s 95 °C 
10 s 57 °C 40x 
70 s 72 °C 

 
 
name sequence template 

puBSd-Fw 5’TCGGGATGACTTTTGGGTTCTG3’ chromosome 2L, 11010370…11010391 

puBSd985R 5’CGCGGTTTAACACAGCGTCGG3’ chromosome 2L, 11011354…11011334 

Table 10 Reaction mixture, primer sequences and thermal cycle for uracil content 

measurement  

 

Calculation 

Uracil content of DNA sample is calculated from the measured Ct (threshold cycle) values of 

two reactions: reaction with wild type Pfu (detects uracil-free DNA) and with Cx-type Pfu 

(detects all DNA).  

 

For each step of serial dilution, the measured Ct values of wild type Pfu reaction are plotted in 

function of Cx-type Pfu Ct values, and linear fitting is applied (Figure 16). The wild type Pfu 
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polymerase can not amplify uracil-containing DNA; therefore it will give higher Ct values. 

Difference between the two linear curves is proportional to the amount of uracil present in 

DNA. 

 

 

 

 

Figure 16 There is a shift between linear slopes of uracil-containing DNA sample (red points) 

and presumably uracil-free DNA sample. 

 

 

 

In the next step, ∆Ct values are calculated. The equation of uracil-free linear curve is used to 

determine the calculated Pfu Ct values (Pfucalc Ct), which would have been measured if the 

DNA had been uracil-free. 

Then,  
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Next, value of amplification efficiency of polymerase reaction is determined according to the 

equation below, where M is the slope of the efficiency curve (Pfu Ct values are plotted in 

function of copy number in logarithmic scale) and A is calculated from M. Figure 17 
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Figure 17 Efficiency curve. Ct values measured with wild type Pfu were plotted in function of 

copy number and represented in logarithmic scale 

 

 

Uracil content is then calculated 

 

 

Value of 963 comes from the length of the measured sequence. 

 

 

Some of the measurements that I present in my thesis were carried out by András Horváth. 

 47



Results 

 

Subcellular localisation of Drosophila dUTPases 

 

Identification of a putative NLS segment conserved among dUTPases 

 

The putative NLS sequence of Drosophila 23 kDa dUTPase shows homology with the NLS of 

human c-myc and RanBP3 (Table 11A). Comparison of dUTPase sequences from different 

eukaryotic species has revealed that they possess similar NLS segments at their N termini as 

found in Drosophila or human larger isoform (Table 11B). In spite of the fact, that most 

classical NLS contains at least 5 basic amino acids within a nonapeptide, these NLSs consists 

of a short cluster of basic residues flanked by neutral and acidic amino acids. The Drosophila 

dUTPase NLS also contains only 3 positively charged amino acids in the middle of the NLS 

motif. It indicates that dUTPase NLS belongs to a rather unusual type of NLS class. 

The PAAKKMKID sequence motif is 100% conserved among available Drosophila genomes 

with exceptions of D.willistoni, D.virils and D.grimshawi (Table 11C). 

 

 

Table 11. dUTPases possess an unusual NLS. 

A│ Drosophila dUTPase NLS is similar to human c-myc, RanBP3 and human dUTPase NLS 

sequences. B│ Examined dUTPases from different eukaryotic organisms possess similar NLS 

as found in Drosophila or human larger isoforms. These NLS sequences contain only 3 basic 

amino acids at conserved positions, and in many of them, one proline residue is also present. 

z: non-charged amino acids., x: any residue C│ Variance of NLS sequences among 

Drosophila species. Positively charged amino acid residues are highlighted in bold. 
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Localisation of Drosophila dUTPase isoforms in S2 cells 

 

Even though transfection of dUTPase-eYFP construct into S2 cell by using Cellfectin reagent 

did not allow immediate observation because of its low efficiency, continuous selection with 

puromycin resulted in approx 70% of the cells overexpressing the fluorescent construct. 

 

S2 cells overexpressing fluorescently labelled constructs of the 23 and 21 kDa dUTPase 

isoforms (green) were also stained for DNA (blue) and actin (red), to aid interpretation of the 

results (Figure 18). The 21 kDa isoform is present around the nucleus and within the 

cytoplasm in all cells; it is, however, strictly excluded from the nuclei. In contrast to this, in 

S2 cells, the 23 kDa construct showed nuclear localisation. This observation directly suggests 

that the N-terminal extension may contain a NLS segment: on one hand, lack of it prevents 

nuclear import of dUTPase; on the other hand, the 23 kDa isoform with the N-terminal 

extension is visualized within the karyoplasm (Figure 18).  

Immunofluorescent micrographs for 23kDa dUTPase isoform indicate that the distribution of 

23kDa dUTPase is not uniform within the nucleus: it is likely to be present in the karyoplasm 

and it might be excluded from the nucleolus.  

 

 

 

 

 

Figure 18 Localisation of Drosophila dUTPase isoforms in S2 cells. The 23 kDa isoform 

shows nuclear localization, while the 21 kDa isoform is cytoplasmic. 

 

 

 49



 

Localisation shifts of Drosophila dUTPase within embryos 

 

S2 cell extract, containing the 23 kDa or 21 kDa fluorescent dUTPase constructs (green), was 

microinjected into embryos and the localisation patterns were followed during nuclear 

cleavage. Rhodamine-tubulin (red) was also coinjected to aid visualization of the mitotic 

stages. Steps of mitosis were determined by following the formation and movements of 

mitotic spindle and centromers, thus localisation of dUTPase isoforms could have been timed 

to mitotic stages. 

Figure 19 clearly indicates that during interphase, the 23 kDa isoform staining is located 

within the nuclear space while the 21 kDa isoform is diffusely scattered and is excluded from 

the nuclei. In agreement with S2 cell culture studies, presence or absence of NLS clearly 

distinguishes the two isoforms regarding their localisation.  

 

As shown on Figure 19, as nuclei enter mitosis, the two dUTPase isoforms show opposite 

localisation shifts. Unexpectedly, the 21kDa dUTPase shows a localisation shift to the 

karyoplasm, meanwhile the 23kDa dUTPase starts to diffuse from the nuclear space. None of 

the isoforms shows colocalisation with the condensated chromosomes. Later on during 

metaphase, the 21kDa dUTPase remains around the chromosomes which have aligned at the 

metaphase plate. Remnants of 23kDa dUTPase can be detected in dividing nuclei, but most of 

the 23kDa dUTPase is scattered all around in the cytoplasm. Localisation of dUTPase 

isoforms does not change much during anaphase; the 21kDa dUTPase traces out the 

chromosomes, which are pulled apart towards the opposite poles. The 21kDa dUTPase gets 

excluded from the karyoplasm only during telophase, when new nuclei of the daughter cells 

and their nuclear envelope emerge. By the end of cytokinesis, embryo regains the state of 

interphase, when 23kDa is nuclear and 21kDa dUTPase is cytoplasmic.  

 

In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected 

localisation shifts. Contrariwise, although the 21 kDa isoform was excluded from the nuclei 

during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. 

The observed dynamic localisation character showed strict timing to the nuclear cleavage phases. 
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Figure 19 Localization shifts of the two isoforms during the cell division cycle from 

interphase to cytokinesis. Note the opposing shifts of the two isoforms, evident from 

prophase. 
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Uracil-DNA in Drosophila melanogaster: interpretation and developmental involvement 

 

Cellular response to uracil substituted plasmid DNA in cell culture 

Drosophila S2 cells were transfected with yellow and human HeLa cells with red fluorescent 

protein by using plasmids pRmYFP and pDsRed-Monomer, respectively. Upon transfection 

of both human and Drosophila cells with normal DNA plasmid, the expression of the 

fluorescent protein encoded by the plasmid can be readily detected, according to the usual 

expectation. However, clear-cut difference could be observed upon transfection with uracil 

substituted plasmid (U-plasmid). Human cells transfected with U-plasmid show hardly any 

fluorescent signal (only 2-3% of cells) indicating that uracil-substituted DNA was not 

interpreted, probably due to its degradation. In Drosophila cells, however, transfection with 

U-plasmid leads to expression of the fluorescent protein at levels comparable to that observed 

in cells transfected with normal plasmid. (Figure 20-21) 

 

 

Figure 20 Uracil-plasmid interpretation 

assays in cell cultures.  

 

 

 

 

 

 

 

 

Figure 21 Percentage of fluorescent 

cells upon transfection with normal 

(T pl.) or uracil-substituted plasmids 

(U pl.) The number of observed 

fluorescent cells is also presented, 

and the total number of scored cells 

is shown in brackets. 
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Cellular response to misregulated dUTP/dTTP ratio 

Drugs 5’-fluorouracil (5’FU) and 5'-fluorodeoxyuridine (FUdR) are inhibitors of thymidylate 

synthase. Therefore treatment with 5’FU or FUdR would lead to perturbation of nucleotide 

levels thereby inducing major increase in the uracil content within DNA [106].  

Figure 22 reports that cellular responses given to 5’FU and FUdR treatment are different in 

human and Drosophila cells. Both drugs destroy human cells, while Drosophila tolerates 

theses drugs very well. In HeLa, the IC50 value for 5’FU was given 21μM, which is in 

agreement with the previously determined IC50 values in mammalian cell lines (Table 22). 

These results support that Drosophila cells might tolerate elevated level of dUTP 

incorporation into DNA. 

 

 

Figure 22 Does-response curves of 5’FU and FUdR treatments 

 

Cell line Origin IC50 for 5’FU Reference 
mES mouse embryonic stem cell 0.72M [107] 
C166 mouse yolk sac, endothelial 1.04M [107] 
H630 human colorectal cancer 1M [108] 
LS174T human colon cancer 45M [109] 
LiM6 human colon cancer 38M [109] 
DU145 human prostate cancer 204M [110] 
HeLa human cervical cancer 278M [110] 

 

Table 12. Examples of half maximal inhibitory concentration (IC50) of 5’-fluorouracil (5’FU) 

reported in the literature, determined in different mammalian cell culture assays.  
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Examining cellular response to uracil substituted plasmid DNA in embryo 

Fluorescent signal was only detectable upon microinjection of Gal4-VP16 expression vector 

into UAS-eGFP transgenic animals. 

 

Upon microinjection of Gal4-VP16 expression vector into UAS-eGFP transgenic animals, 

GFP signal indicated the interpretation of exogenous DNA. In pre-hatching embryos GFP 

signal was detected from both, normal and uracil substituted DNA (Figure 23). In both cases 

the expression pattern of the reporter construct is identical. It is pronounced in embryonic 

yolk cells therefore GFP is visible in the gut.  

 

 

Figure 23 Uracil-plasmid interpretation assays in Drosophila embryo 

 

dUTPase RNAi in Drosophila melanogaster 

To investigate physiological response given to uracil-DNA in later stages of development 

dUTPase silencing was induced. Reduced level of dUTPase would lead to dUTP 

misincorporation into DNA. 

 

Crosses targeting tissue specific silencing of dUTPase, crosses with engrailed-Gal4/Cyo, GFP 

and GMR-Gal4 drivers, did not resulted in observable eye or wing phenotype.  

 

Ubiquitous silencing of dUTPase was induced by using ActGal4/CyoGFP driver. Under 

normal physiological circumstances in early Drosophila embryo, dUTPase protein and RNA 

is maternally provided, therefore efficient silencing could be achieved only in later stages of 

development. 

 

Upon silencing at 25˚C, protein level of dUTPase has been reduced below detection limit in 

3rd larvae and early pupae (Figure 24). In larvae dUTPase is expressed only in imaginal 

tissues, thus decreased level of dUTPase is due to its clearance from imaginal discs and 

imaginal cells. 
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Figure 24 Robust silencing of dUTPase in 3rd larvae (A) and pupae (B) 

 

 

Virtually dUTPase-free larvae did not show any adverse effects indicating that dUTPase 

silencing did not perturb normal life and development in the larval stages.  

At early pupal stage, however, dUTPase silencing led to lethality – no silenced animals could 

develop into imago and only fruitflies with curly wing, i.e. where silencing does not take 

place, emerged from pupa. Morphological observations indicated serious adverse effects: 

failure of head eversion and developmental arrest (Figure 25) [111]. On Figure, arrow points 

to the developing head, this forms as the imaginal head sac is everted. Upon dUTPase 

silencing head could not formulate, thus transition from cryptocephalic pupa to 

phanerocephalic pupa is prevented. In addition to failure to complete this process, 

development is arrested. By comparing animals 24 hours later, lack of malphigian tubules can 

be observed. All pupae perish at this stage of development if dUTPase RNAi was induced. 

 

 

 

Figure 25 dUTPase silencing has caused failure of head eversion and developmental arrest 

Images were recorded appr. 12h and 34h after puparium formation (APF) 
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The observed adverse effect of dUTPase silencing indicates that lack of dUTPase can be 

tolerated only at certain stages of fruitfly development. Moreover, it argues that the role of 

dUTPase in nucleotide metabolism and synthesis is not dispensable 

 

dUTPase silencing was induced with two UAS-IR stocks, #21883 and #21884, and resulted in 

consistent effects. In both stock, UAS-IR insertion is present on the second chromosome of 

Drosophila, although at different genomic position. Mapping of UAS-IR construct revealed 

their precise location (Table 13). These date reinforce the conclusion that the observed 

phenotype is truly due to dUTPase silencing. 

 

VDRC stock# Insertion site 3’ flanking gene 5’ flanking gene 

21883 2R, 60A  19812632 CG5594 CG2812 

21884 2L, 35A  14234587 CG4551 - 

Table 13 Genomic position of dUTPase UAS-IR constructs 

 

Uracil content of Drosophila biological samples 

In order to test our working hypothesis that uracil could accumulate in DNA of fruitfly larvae; 

measurement of uracil level was carried out by applying real-time quantitative PCR based 

method.  

 

Data argues that DNA purified from Drosophila embryo is relatively uracil-free and therefore 

genomic DNA of embryo could be used as a reference DNA sample in later measurements 

(Figure 26A).  

 

Uracil level was estimated from different stages of development, with high emphasis on larval 

stages (Figure 26B). Results show that during larval stages uracil is accumulated, and reaches 

its maximum level at 3rd stage larvae. This finding provides clear-cut evidence arguing for the 

main working hypothesis of this project, that lack of dUTPase and lack of UNG are sufficient 

to generate high uracil content DNA in Drosophila larval tissues. In addition, uracil-DNA was 

found to be present in all stages of development except in embryo. It indicates that uracil-

DNA is not restricted to larval stages even though it is most pronounced in 3rd larvae. 
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Uracil level in Drosophila melanogaster samples is comparable to the uracil level previously 

reported in ung – /dut – E.coli [95]: 3000-8000 uracil/ 106 bases, or in other words, one out of 

every 125-300 bases is uracil. As DNA was isolated from the whole animal, these 

measurements could give an average estimation for uracil level present in the organism. 

 

The highest value for uracil-DNA, 19000 uracil/ 106 bases (every 52nd base is uracil!) was 

found in salivary gland dissected from late 3rd stage larvae; which further supports 

accumulation of uracil in larval tissues (Figure 26C). Contrary to this, imaginal discs contain 

much less uracil. Results also indicate that uracil content varies according to the 

presence/absence of dUTPase in different tissues. 

 

A     B 

 

C 

 

 

 

Figure 26 Uracil content of DNA in D. melanogaster 

A| Uracil content of Drosophila embryo B| Uracil content of 

Drosophila melanogaster in different developmental stages: 

embryo (E), 1st larvae (L1), 2nd larvae (L2), late 3rd larvae 

(L3), pupae (P) and imago (I). C| Uracil content of wild type 

imaginal disc and salivary gland. Data are presented as mean 

uracil% ± s.e.m. 
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This phenomenon was perturbed upon silencing of dUTPase in larvae which resulted in 

similar uracil content, as silencing increased the level of uracil in imaginal discs (Figure 27). 

Here I found clear correlation between the presence of dUTPase and uracil content of DNA. 

Even though dUTPase is present in wild type imaginal discs, according to these 

measurements, imaginal discs are not completely uracil-free, probably as a consequence of 

lack of UNG. 

 

            

 

 

Figure 27 Silening of dUTPase induced uracil accumulation also in the imaginal disc of 

Drosophila melanogaste larvae. Data are presented as mean uracil% ± s.e.m. 
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Cell culture experiments further supports that 5’-fluorouracil (5’FU) and 5'-

fluorodeoxyuridine (FUdR) treatment truly perturbed and increased the level of uracil which 

was well-tolerated by Drosophila Schneider 2 cells. Uracil incorporation resulted from 20-

50μM 5’FU and 50-100M FUdR was detected (Figure 28). In this concentration range 5’FU 

and FUdR are highly toxic to human cells because they leads to such a high level of uracil 

incorporation into DNA that induces DNA fragmentation thus thyimine-less cell death. Such 

response to uracil-DNA was not provoked in Drosophila cells. 

 

 

 

 

Figure 28 Thymidylate synthase inhibitors (5’FU and FUdR) caused uracil accumulation in 

the DNA of Drosophila S2 cells. Data are presented as mean uracil% ± s.e.m. 
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Discussion 

 

Subcellular localisation of Drosophila dUTPases 

 

In this study, NLS of Drosophila dUTPase was identified in silico and confirmed in vivo. 

Recently, properties of Drosophila dUTPase NLS were further described in details. According 

to Merényi et al. [112] neutral and proline residues also contribute to the nuclear targeting 

potential of NLS. They showed that only the full length PAAKKMKID sequence able to 

direct clear nuclear accumulation of NLS-GFP construct, which is in agreement with the 

localisation pattern of the 23kDa dUTPase isoform. Truncated NLS (KKMKID), although it 

contained all basic residues, caused presence of NLS-GFP in the nucleus and in the cytoplasm 

as well. KMKID sequence was also able to target nucleus, even though lack of one of K 

residues. A subsequent lost of basic lysine (K) residue, as found in 21kDa isoform (MKID), 

leads to cytoplasmic localisation.  

The dUTPase NLS segment is well preserved in other eukaryotic dUTPase sequences     

(Table 11) indicating that in most cases, the enzyme can be transported to its physiologically 

cognate cellular compartment, i.e. the nucleus. 

 

Our present results confirm that in Drosophila melanogaster mitochondria does not contain 

dUTPase at detectable level. As mitochondria in fruitfly lacks UNG and also other uracil-

DNA glycosylases, misincorporation of dUTP does not represent severe threat for the 

integrity of mitochondrial DNA as dUTP misincorporation-born uracil does not bear 

mutagenic potential. Theoretically regulation of dUTP/dTTP ratio could be achieved by the 

short (21kDa) dUTPase in the cytoplasm, and that ratio should be applied for the 

mitochondrial environment too. 

 

Interestingly, Drosophila dUTPase may be excluded from the nucleolus (Figure 18), from the 

nuclear place of intensive ribosomal RNA synthesis, even though such restriction has not 

been observed in other localization studies. Nucleolus is freely available for most proteins 

present in the nucleus.  
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Localisation shifts of two dUTPase isoforms in Drosophila embryos of syntitial blastoderm 

stage show synchronised character (Figure 19). These shifts are closely timed to the nuclear 

cleavage phases (mitosis). 

Shifts in localisation occur as nuclei enter mitosis and the nuclear pore complexes 

disassemble. The intact nuclear envelope also partially disintegrates, but remnants of it still 

provide some separation between nuclear and cytoplasmic compartments. This specific 

pattern has been termed as “semi-closed” (the term “semi-open” is also used) mitosis [113] 

and the retained nuclear membrane is called spindle envelope. 

While nuclear pore complexes disassemble, the nuclear envelope becomes permeable. 

Permeability of the nuclear membrane give way to free passage of macromolecules into and 

out from the nuclear space. Size- and NLS-selective, directional importin-dependent active 

nuclear transport process through the pores can not operate from prophase [114]. 

As the border between nucleus and cytoplasm becomes permeable and non-restrictive, the 

23kDa isoform diffuses out from the nucleus while the 21kDa isoform enters to the nuclear 

space and accumulates there. The observed accumulation of 21kDa isoform around the 

chromosomes in dividing nuclei (vs. diffusion of 23kDa isoform) could suggest that the 

21kDa isoform might has an isoform specific interacting partner in the nucleus which is able 

to capture it and this putative interaction might be responsible for the unexpected localisation 

shift of 21kDa isoform. Identification of such an interacting partner and the selective manner 

of this hypothesised interaction with the 21kDa isoform would require further investigation. 

 

The present results clearly indicate that the role of dUTPase isoforms in Drosophila is at least 

partially different from those described in humans with respect to the NLS-lacking isoform. In 

humans, this isoform is a “bona fide” mitochondrial protein [97], however, in Drosophila, the 

second isoform may also be present in the nuclear space, at least in the syncytial stage of 

embryonic development. During this stage, mitotic cycles follow each other in a very rapid 

manner. Our present results suggest that the presence of dUTPase in the nuclear space might 

be of increased importance during the whole cell cycle to provide accurate regulation of 

dUTP/dTTP pools for both repair and replicative DNA synthesis. 
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Uracil-DNA in Drosophila: interpretation and developmental involvement 

 

Cellular response to uracil-DNA in Drosophila melanogaster 

My results argue that a plasmid with high uracil-content (U-plasmid) can drive the expression 

of fluorescent protein in Drosophila, but not in human cells (Figure 20). 

 

Uracil content of the reporter plasmid was similar in order of magnitude to the uracil content 

of genomic DNA of the adequate E.coli strain. XL1Blue E.coli produce DNA with uracil 

level under detection limit (1 uracil/106 base), whereas ung-, dut- CJ236 E.coli strains 

synthesised DNA with 3000-8000 uracil/ 106 base [95]. 

Such uracil content was sufficient for inducing cellular response to uracil-DNA and for 

distinguishing between different uracil-DNA-processing properties of Drosophila and human 

cells. 

 

High uracil content of plasmid from CJ236 E.coli strain emerged mainly due to lack of 

dUTPase thus misincorporation of dUTP into the DNA. Such uracils in the A:U pairs are 

subjected to repair only by UNG. Even though expression level of all uracil-DNA 

glycosylases was not assessed for this experiment, results indicate that HeLa cells encoding 

ung gene are able to degrade U-plasmid, while lack of ung in Drosophila allows U-plasmid 

driven expression. It suggests that Drosophila cells (both, Schneider 2 cell culture and 

embryo) tolerate and interpret uracil-DNA and the other uracil-DNA glycosylases (SMUG, 

Thd1, MBD-R2) that are present in Drosophila could not substitute UNG in this assay. 

 

Anticancer drugs, 5-fluorouracil (5’FU) and 5'-fluorodeoxyuridine (FUdR) affect the 

dUTP/dTTP ratio in the nucleotide pool and increases incorporation of dUMP into DNA. 

High level of uracil is subjected to DNA repair mainly by UNG which process leads to 

thymine less cell death. This is one of the mechanisms of their cytotoxicity and its importance 

is further underlined by the fact, that ung gene disruption in S. cerevisiae has protective 

effects against the lethality of 5-fluorouracil [115]. Similarly, lack of UNG in Drosophila has 

resulted in 5’FU and FUdR resistance/tolerance. 

However, current results should be treated with caution. In human cells 5’FU can mediate its 

cytotoxic effect via two other routes as well. If converted to fluorodeoxyuridine triphosphate 

(FdUTP), it could get incorporated into the DNA, and subjected to similar DNA repair 

mechanism as uracil. If converted to 5-fluoro-UTP (FUTP), it could incorporate into RNA 
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molecules, particularly rRNA, which leads to inhibition of rRNA processing [116]. As a result 

of all above mentioned processes, 5’FU can induce cell cycle arrest and/or apoptosis. Impact 

of these mechanisms on overall cell death is a subject of current debate; however it possibly 

varies from cell line to cell line, and depends on the expression level of enzymes involved in 

nucleotide metabolism and uracil-repair [89, 117]. 

 

According to the literature, 5’FU or uracil from DNA (5’FU/U:A, 5’FU/U:G) is mainly 

removed by UNGs, but importance of the thymine DNA glycosylase (TDG) in mouse and 

human cells in 5’FU response was also reported. It was shown that inactivation of TDG is 

sufficient to confer resistance to 5’FU, whereas overexpression of TDG sensitizes cells to the 

drug [118].  

 

Direct measurement of uracil content argues that 5’FU or FUdR treatment has led to 

dUTP/dTTP imbalance which has caused the misincorporation of dUMP during DNA 

replication. It gave rise to a dose-dependent increase in the steady-state level of uracil in DNA 

(Figure 28). 

These results suggest that the genetic information stored in uracil-substituted DNA, plasmid 

or genomic DNA, serves as a cognate code for transcription in Drosophila cells. Such ability 

of the fruitfly cells is most probably due to lack of UNG so that uracil-DNA does not get 

rapidly degraded.  

 

 

Significance of dUTPase in Drosophila 

Although dUTPase is dispensable in larval tissues, the enzyme is essential in tissues preserved 

during metamorphosis for normal development. High level of uracil in DNA (synthesized in 

lack of dUTPase) might be tolerated only in stage and tissue-specific manner. Data argue that 

tolerance towards uracil-DNA might be restricted to larval stages and larval tissues. 

Larval tissues containing high level of uracil-DNA are degraded during metamorphosis and 

imaginal discs with perturbed uracil-DNA content also showed developmental arrest. 

However, consequences and targeting mechanisms of uracil-DNA might be different in wild 

type larval and in dUTPase silenced imaginal tissues. Identification of such factors requires 

further investigation which would be highly important and interesting. 
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Uracil content of Drosophila biological sample 

The technique here applied gives numbers of uracil present in the PCR primer enclosed 

sequence and estimates the overall uracil-content of the genome. 

Probably, level of uracil varies within different regions of chromosomes. Heterochromatin-

euchromatin regions presumably differ in uracil content as a consequence of different 

condensation state, transcriptional activity, copy number or exposure to DNA damaging 

agents. Heterochromatine regions do not undergo endoreplication, remain condensed and 

most part of them is transcriptionally inactive [119]. Therefore lower rate of uracil 

accumulation could be presumed for these regions. 

 

Protein factors putatively involved in response to uracil-DNA in Drosophila 

melanogaster 

Uracil content measurements provided direct evidence that upon high dUTP level, during 

replication and DNA repair linked DNA synthesis high uracil content DNA is synthesised and 

it is maintained in Drosophila (Figure 26). These uracils are present in A:U pairs, therefore 

they are not mutagenic. They probably also serve as perfect code for RNA synthesis [120, 

121], because RNA polymerase may also tolerate uracil in DNA. 

In mammals, the major factor that cleave uracil from A:U context is UNG, thus in Drosophila 

tolerance of uracil-DNA is quite probably due to the lack of the ung gene. Above the absence 

of UNG from the whole organism, in larvae absence or low level presence of other uracil-

DNA glycosylases could be presumed based on their expression level, which implies 

tolerance of G:U mispairs. 

Enzymes involved in uracil-DNA repair pathways, such as Drosophila uracil-DNA 

glycosylases (SMUG, Thd1 and MBD-R2), AP endonuclease (Rrp1) and AP lyase (RpS3) 

[122] were scored whether their expression is turned off during larval stages [123].(Figure 28) 

 

RNA level of most uracil-DNA repair enzymes is relatively high in embryo and low in larvae 

according to microarray based data published on Flybase [123, 124] (Table 14). However 

enzymes responsible for other DNA damage repair processes are expressed in different 

pattern, some even show higher level in larvae than in embryo (Table 15). Therefore we could 

assume that low level of expression is not ubiquitous among proteins involved in DNA repair 

pathways but characteristic to uracil-DNA repair. Thd1, the only uracil repair enzyme 

showing balanced expression throughout development, repairs U:G mismatches, thus it does 

not act on uracil resulted from dUTP incorporation. Taken together, three different factors 
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were described which are responsible for stage-specifically elevated level of uracil in larvae: 

1) lack of ung gene, 2) absence of dUTPase protein and 3) decreased level of RNA of 

enzymes working on uracil removal. 

 

 

Table 14 Expression levels of enzymes involved in uracil-DNA repair are lower in larvae than 

in embryo. 

 

 

 

Table 15 Low level of expression is not ubiquitous among proteins involved in DNA repair. 
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Figure 29 Expression patterns of uracil-DNA repair genes in Drosophila melanogaster. [123] 
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The extraordinary situation of tolerance and interpretation of uracil-DNA may not be 

exclusively present in Drosophila as absence of ung is ubiquitous among Holometabola 

(Table 16). As uracil-DNA naturally occurs in larval tissues that are sentenced to death, we 

consider that uracil-DNA might be linked to metamorphosis and tissue degradation in a 

general fashion in Holometabola insects. Further investigations should be taken to describe 

the mechanism, its impact and its putative role.  

 

 

 

Table 16 The gene of the main uracil-DNA glycosylase, ung is not encoded in the genome of 

Holometabola species. 

 

 

The main message of this work is that uracil-substituted DNA can be tolerated and interpreted 

in Drosophila that is further paralleled by stage and tissue-specific presence of dUTPase and 

uracil-DNA repair pathways. 
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Further Speculations and Open Questions 
 

Lack of UNG in Drosophila and Holometabola group of insects is exceptional among living 

organisms, but presence of three uracil-DNA glycosylases with different enzymatic properties 

might at least partially substitute UNG function to keep mutation rate at low level.  

dUTPase and Thd1 are enriched in embryonic gonads [125], therefore Thd1, G:U mispair- 

specific uracil-DNA glycoslyase, might be able to preserve integrity of DNA and dUTPase 

supposedly assure that DNA is synthesised in a relatively dUTP misincorporation-free 

fashion. 

 

The major threat of uracil lays in its mutagenic potential, if it occurs in mismatch with 

guanine. A:U pairs were not reported to be harmful and uracil-DNA glycosylases in 

Drosophila might not be available or not be able to process them. In such cases, presence of 

A:U pairs would only depend on dUTPase activity.  

Surprisingly, dUTPase is not expressed in larval tissues and many other tissues of imago, only 

detected in embryo, imaginal tissues and ovaries [100]. According to microarray data, its 

mRNA level is also elevated in CNS (central nervous system) of larvae, but these tissues 

resemble to imaginal tissues in respect of keeping diploid chromosomal state and do not go 

through rapid degradation during metamorphosis. Microarray data also indicates that 

expression of SMUG, MBD-R2 and Rrp1 show similar tissue- and stage- specific pattern as 

dUTPase, however Thd1 might be an exception. 

 

SMUG might be able to cut either deamination-born or misincorporation-born uracil in 

single-stranded DNA environment (Figure 9). The observed severe developmental defects in 

dUTPase silenced animals could be also explained theoretically by SMUG induced DNA 

damage response.  

 

Stage- and tissue- specific pattern of dUTPase expression and presence of uracil-DNA might 

argue for their developmental importance. According to uracil-DNA level measured in ung- 

E.coli, lack of UNG would not be sufficient alone for such high level of uracil accumulation. 
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Table 17 summarises some of the possible causes and consequences of high level of uracil in 

DNA under physiological conditions in Drosophila larvae. Furthermore, it aims to inspire 

further investigations and considerations on this exciting phenomenon on the narrow margin 

of DNA metabolism and Drosophila development. 

 

Causes Possible consequences 
Lack of UNG Uracil-DNA cleavage, degradation 

Lack of dUTPase 
DNA damage response, apoptosis,  
cell cycle arrest 

SMUG, TDG, MBD-R2 may not act 
efficiently on A:U basepairs 
Errors introduced during DNA 
synthesis and transcription coupled 
DNA repair 

U
racil-D

N
A

 Transcription misregulation: 
No binding of transcription factors 

 
Table 17 
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Epilogue 

 

In the micro-cosmos of Drosophila melanogaster, two aspects of uracil-DNA metabolism 

were discovered. First, novelty of dUTPase localisation in early embryo caused amazement. 

In this state of development dUTPase is present with high protein level preventing 

incorporation of dUTP into DNA. Second, uracil measurement in larvae provided supportive 

evidence for the astonishing hypothesis that uracil-DNA is accumulated in larval tissues as a 

consequence of lack of dUTPase and lack of UNG. 

Special characteristics of Drosophila uracil-repair probably harbour more to explore. 
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Summary 

 

Uracil frequently appears in DNA either from cytosine deamination or thymine-replacing 

incorporation, even though it is not a native component of DNA. Catalytic actions of two key 

factors are responsible for maintaining uracil-free DNA: dUTPase prevents uracil (dUTP) 

incorporation into DNA, and uracil-DNA glycosylases excise uracil from DNA. Prevention 

and removal of uracil highly contribute to preserving the genetic information encoded in 

DNA.  

 

In this study, appearances of uracil have been investigated in Drosophila melanogaster. Most 

importantly, I confirmed that larval tissues accumulate uracil in DNA, as both prevention and 

removal of uracil is impaired because the major uracil-DNA glycosylases (UNG) is not 

encoded in the genome of Drosophila melanogaster and dUTPase is down-regulated in larval 

tissues. By applying multiple approaches, I showed that Drosophila cells are capable of 

tolerating high level of uracil in DNA. Lack of UNG in all examined Holometabola species 

indicates potential wide presence of uracil-DNA in the insect world. These data open exciting 

possibilities for the putative role of uracil-substituted DNA in insect development and 

metamorphosis. 

 

As ung is not encoded in Drosophila melanogaster, significance of dUTPase in uracil 

metabolism might go beyond expectations. Therefore much attention was paid to dUTPase in 

the fruitfly. 

In such experiments where dUTPase RNAi was induced, data argues that dUTPase is not 

dispensable in Drosophila, and lack of dUTPase in imaginal tissues leads to lethality. 

 

Studies on uracil content aimed to confirm the impact of dUTPase in such emerges. To 

achieve it, a recently developed technique was used to quantify uracil content of DNA. 

Results showed that lack of dUTPase indeed increases the level of uracil in DNA. 

 

Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly. I confirmed that the 

PAAKKMKID sequence of 23kDa isoform N terminal region is an NLS, and 23kDa isoform 

is present mainly in the nucleus in Drosophila Schneider 2 cells. The 21kDa isoform lacking 

NLS stayed in the cytoplasm, indicating that no mitochondrial isoform of dUTPase exists in 

Drosophila. Surprisingly, upon microinjection of 21kDa dUTPase isoform into actively 
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dividing Drosophila embryos, it accumulated in the nuclear space at certain stages of mitosis. 

The observed dynamic localisation character showed strict timing to the nuclear cleavage 

phases and indicated that both isoforms can be present within the nuclear microenvironment, 

although at different stages of cell cycle. 
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Összefoglalás 

 

A DNS-t adenin, timin, guanin és citozin bázisok építik fel. Uracil csak elvétve fordul elő 

benne: ha a DNS polimeráz hibát vét és dUTP-t használ fel dTTP helyett a DNS 

szintéziséhez, vagy, ha egy-egy citozin bázis elveszíti amin csoportját (dezaminálódik). 

Kétféle mechanizmus óvja a DNS-t az uracil jelenlététől, egyrészt a dUTP-t bontó dUTPáz 

megelőzi a beépülését, másrészt az uracil-DNS glikozilázok eltávolítják a „hibás” bázist. 

Mindkét folyamat nagymértékben hozzájárul a DNS-en kódolt genetikai információ 

megőrzéséhez. 

 

Doktori értekezésemben az uracil-DNS megjelenésének lehetőségeit vizsgáltam 

ecetmuslicában. Elsőként kiemelném, hogy sikerült bizonyítanunk, hogy az ecetmuslica 

lárvális szöveteiben jelentősen megnő a DNS uracil tartalma. Ennek oka a dUTPáz és a 

legnagyobb katalitikus hatékonysággal bíró uracil-DNS glikoziláz (UNG) aktivitásával 

magyarázható. A dUTPáz nem fejeződik ki a muslica lárvális szöveteiben, valamint az UNG-t 

kódoló gén hiányzik az ecetmuslica genomjából. Többféle megközelítést alkalmazva 

bebizonyítottam, hogy a muslica sejtek képesek tolerálni az uracil magas szintjét is a DNS-

ben. Mivel az UNG-ot kódoló szekvencia nemcsak a muslicából, de az összes megvizsgált 

teljes átalakulással fejlődő rovar (Holometabola) genomjából is hiányzik, az uracil-DNS 

általánosan előfordulhat a Holometabola lárvák DNS-ében. 

 

UNG hiányában a dUTPáznak kiemelten fontos szerep juthat a DNS uracil tartalmának 

szabályozásában, ezért további kutatásaim a dUTPáz enzimmel foglalkoztak.  

dUTPáz csendesítés hatására a dUTPáz fehérje eltűnt az imaginalis diszkuszokból, ami letális 

fenotipust okozott, valamint dUTPáz hiányában megnövekedett a DNS uracil tartalma. 

Ecetmuslicában, csakúgy, mint emberben két dUTPáz izoforma található meg (21kDa és 

23kDa). Bebizonyítottam, hogy a 23kDa-os izoforma N-terminálisán található PAAKKMKID 

szekvencia a nukleáris lokalizációért felelős nukleáris lokalizációs szignál (NLS). Ezzel 

ellentétben, a 21kDa-os izoforma nem hordozza ezt az NLS-t és a sejtkultúrában végzett 

kísérletek alapján a citoplazmában lokalizálódik. Különösen érdekes, hogy ecetmuslicában 

nincsen mitokondriális izoformája a dUTPáznak. Meglepő módon, a 21kDa-os izoforma a 

sejtmagosztódások során felhalmozódik a sejtmagnak megfelelő térrészben Drosophila 

melanogaster korai embrióban. A dUTPáz lokalizációjának változása szigorúan a sejtciklus 

 73



bizonyos fázisaihoz kötött és biztosítja, hogy mindkét izoforma előfordulhat a sejtmagnak 

megfelelő térben, bár a sejtciklus eltérő fázisaiban. 
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