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Chapter 1

Preliminaries

1.1 Background and motivation

The matching problem of graphs with the fundamental works of Tutte, Berge,

Gallai, and Edmonds plays a central role in the history of combinatorial opti-

mization. Another fundamental �eld of combinatorial optimization starting from

�ows, connectivity, matroids, and polymatroids led to the development of an-

other wide theory related to submodularity. The matching problem of graphs

and the matroid intersection problem (which are both essential problems from

these �elds) suggested Lawler to introduce a common generalization: the matroid

matching problem (a.k.a. polymatroid matching, matroid parity, or polymatroid

parity) [30; 31]. Equivalent de�nitions were given by Edmonds and Jenkyns [25].

For a long time all the solvable special cases of matroid parity turned out to

be reducible to the above mentioned two special cases. Thereafter came Lovász'

seminal results on matchings of polymatroids [33] including his characterization for

the size of the maximum matching for linear polymatroids [34]. He developed also

an algorithm for the linearly represented case [35; 39]. The value of this result is

in the common experience that most of the matroids that we meet in daily life are

linear. However, the linear approach is not satisfying for combinatorial problems as

the techniques and the solution obtained does not re�ect the combinatorial nature

of the problem. The phenomenon described by the last sentence is one of the most

important motivations of this work where we try to have a more combinatorial

viewpoint.
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1. PRELIMINARIES

One remark is needed right here on the notion of �being combinatorial�, which

may be also a partial explanation of the title. One might say that matroids and

polymatroids are purely combinatorial structures, so what do we mean by drawing

the distinction between combinatorial and non-combinatorial polymatroids? Our

applications usually come from graph theory, and from the combinatorial opti-

mization inseminated by Edmonds' notion of good characterization. Hence, in our

point of view, polymatroids de�ned by natural �nite combinatorial objects i.e. by

graphs, hypergraphs, cuts, trees, by their substructures, etc. are considered to be

combinatorial. We do not think a full linear matroid, or a polymatroid de�ned by

the transcendence degrees of sub�elds of a �eld extension as a really combinatorial

object. Though the distinction is not very exact, we hope that our view will be

clear for the reader.

But let us go back to our main line of outlining what happened in the parity

history after Lovász' results. Just after that Lovász [33] solved the linear case, he

and independently Jensen and Korte [26] showed that the matching problem is

not tractable for general matroids. Thus, the main problem which remained is to

explore wider classes of matroids where the size of the maximum matching has a

good characterization. In order to characterize the size of the maximum match-

ing, Lovász' structure theorem either decomposes the problem into smaller ones

or shows the existence of some special substructures. In the latter case we can

get stuck. One of these substructures are the so called non-trivial double circuits.

According to the present state of the theory, the nice behavior of the double cir-

cuits is responsible for the existence of a good characterization. This observation

was made explicit by Dress and Lovász [10]. They introduced the double circuit

property (DCP) as a possible way of this good behavior, which seemed to be an im-

portant property of linear matroids in Lovász' proof. We got therefore that the size

of the maximum matching of DCP polymatroids have a good characterization. As

the place of DCP matroids in the hierarchy of matroids is not evident, Björner and

Lovász [3] and Hochstättler and Kern [23] examined abstract properties like series

reduction property or pseudomodularity which imply the DCP. Unfortunately, the

study of matroid classes related to the DCP stopped in the late eighties, and the

obtained results helps only in few cases of our applications. Therefore, it remains

a great challenge to explore combinatorially suggested polymatroid classes where

we have a good characterization.
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1.1 Background and motivation

There are various problems in combinatorial optimization which can be formu-

lated naturally as matroid matching. Lovász [33] has shown also several examples

where this nature of the problem is less apparent. These are the maximum tri-

angle cactus problem of 3-uniform hypergraphs, Mader's vertex-disjoint A-paths

problem, and the pinning down problem of 2-dimensional bar-and-joint frame-

works. The �rst algorithmic approach to the maximum genus embedding problem

of graphs is based on the matroid parity problem of the cographic matroid [16].

The latter problem can be generalized in several ways, one of these leads to the

theory of parity constrained connectivity orientations of graphs [13; 15; 27; 44].

Matroid matching appears even in the �eld of approximation algorithms, the best

approximation for the planar subgraph problem [6; 7; 8] is based on maximum tri-

angle cacti, and there are valuable implications in the Steiner tree approximations

[2; 47; 48].

If most of the everyday polymatroids (including the polymatroids arising in

the above mentioned applications) are linear, what are the problems with that

approach? We will see polymatroids in applications, such that we would not bet

that all of them are linear. We have already mentioned that even if the polymatroid

is linear, the min-max relations and characterizations obtained by linearity do not

have a combinatorial nature. Another problem which may happen is that we are

not aware of a deterministic method computing a representation. In this case

we do not get a good characterization of the size of the maximum matching nor

an algorithm computing it unless randomization is allowed. We think that the

motivation of Dress and Lovász to introduce the DCP was to extend Lovász min-

max relation to wider classes than linear polymatroids. For us, their result is

more interesting for some subclasses of linear polymatroids. By the help of the

DCP, more combinatorial characterizations will be obtained for some combinatorial

polymatroids. We will see also characterizations which are not likely to be related

to polymatroids having the DCP.

Although it turns out that the topic of this thesis is related to all of the typical

topics of combinatorial optimization ranging from good characterizations, deter-

ministic and randomized algorithms, heuristics to approximation algorithms, our

work is restricted to the �rst few members of this list. By being solvable we usually

mean a simple good characterization to the problem, we are trying to eliminate

randomization, and in very few cases we also mention how to work out a polyno-
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1. PRELIMINARIES

mial deterministic combinatorial algorithm by tweaking the known algorithms.

We have to mention that the most recent results related to parity deal with

the parity problem of delta matroids (or more generally of jump systems) [4; 5;

19; 20; 37]. As very little is known about the combinatorial instances of these

problems where combinatorial characterizations exist, the present work absolutely

omits this topic.

1.2 Overview of the thesis

The thesis discusses the matching problem of polymatroids arising in combinato-

rial applications, and introduces polymatroid constructions which hopefully give

a more uni�ed view of these problems.

Most of the results in the theoretical part of matroid parity literature heavily

rely on Lovász' papers, lacking therefore being self-contained. We try to summarize

the most important preliminary results and their proofs. To account for this we

emphasize that these statements can be stated � and in fact are stated in the

literature � in many di�erent forms. It would be messy even to cite the results and

retransform them to the appropriate forms. We devote Section 2 to work out this,

which is hopefully useful for those readers who are not familiar with the related

literature.

In the sequel we start a detailed examination of the parity of some combi-

natorial matroids and polymatroids. It is an important common feature of our

polymatroids that they are usually de�ned by intersecting/crossing sub-, or su-

permodular functions. Although each polymatroid (or base polyhedron) can be

de�ned this way, this may endow the polymatroid with interesting properties. The

evident question is that under what properties of the de�ning intersecting submod-

ular function does the arising matroid have the DCP, or some other properties

which imply the existence of a good characterization for the size of the maximum

matching.

Our starting point is the examination of count matroids [57; 58] in Chapter 3.

In the thesis they are referred as (k, l)-matroids, according to their two parameters.

For some special cases we already know the DCP. This is the case for cycle matroids

of complete graphs (k = l = 1), and for transversal matroids (k = 1, l = 0) if

each singleton is in the ground set. These imply the Berge-Tutte formula [1],

4



1.2 Overview of the thesis

the min-max relation for transversal matroid matching [10; 55], graphic matroid

matching (maximum triangle cactus) [33]. We prove that a density condition for

the hypergraph (which forms the ground set of the matroid) imply the DCP for

general (k, l)-matroids. It is an interesting corollary that the 2-dimensional generic

rigidity matroid of the complete graph has the DCP. There is also a consequence

concerning an estimation of the rank of the 3-dimensional generic rigidity matroid.

In Chapter 4 we generalize this by introducing a new concept, the class of solid

polymatroids. These polymatroids are de�ned again by intersecting submodular

functions, and we extract some properties of count matroids which were needed to

the DCP. The construction involves the min-max relation for the maximum num-

ber of Mader's vertex-disjoint A-paths [41] (Chapter 5), and the characterization

for the parity constrained orientation problem of Frank, Jordán, and Szigeti [13]

(Subsection 6.2.1). There will be other important implications in the �eld of parity

constrained connectivity orientations which is the topic of the subsequent chapter.

A rather new area of parity problems arises in parity constrained connectiv-

ity orientation problems of graphs and hypergraphs [13; 15; 27; 44] (Chapter 6).

It is known that if a connectivity requirement is described by an intersecting or

crossing supermodular function, then the class of graphs or hypergraphs having

an orientation covering the requirement can be characterized. We ask for the ex-

istence of orientations having moreover a prescribed parity of out-degree for each

vertex. Hence, this is a possible generalization of matchings of graphs and con-

nectivity orientations. We will see that some special cases of this problem �t into

the framework of solid polymatroids, but Király and Szabó's [27] general problem

where the connectivity requirement is described by a non-negative intersecting su-

permodular function does not seem to. To insert this problem into the theory

of polymatroid parity, a new phenomenon must be exploited (Chapter 7). First,

it is an important observation that these polymatroids have no non-trivial com-

patible double circuits (NTCDCs) at all. Second, it will be shown also that for

polymatroids without NTCDCs a partition type formula characterizes the max-

imum matching. The class of polymatroids without NTCDCs is neither a sub-

nor superclass of DCP polymatroids, the members are unlikely to be linear or

to have structural properties related to the DCP. This class shows that matroid

parity is not a closed, �nished theory; the search for connections between DCP

polymatroids and polymatroids without NTCDCs may open new research topics
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1. PRELIMINARIES

of matching theory.

Very little is known about the matching problem of polymatroids constructed

by crossing submodular functions in terms of the properties of the de�ning crossing

submodular function. We present a characterization for planar graphs having

strongly connected orientations with even out-degrees (Subsection 6.3.1). But we

have no result for the problem formulated to general graphs.

Most of the algorithmic questions related to the characterizations are left open

by this study. We mention some cases when we are aware of an algorithm comput-

ing the maximum matching and the combinatorial dual proof, but most of them

are left for future challenges (see Chapter 8).

1.3 Submodular functions, matroids, and polyma-

troids

For the most important graph, hypergraph, and matroid theoretical concepts and

notions the reader is referred to standard textbooks, e.g. to [50; 51; 52]. Here

we present the most important properties of polymatroids as the basic results

about matchings are presented for polymatroids. Matroids are tacitly considered

as special cases of polymatroids and we follow this principal even when some

notations happen to be unusual.

Let S be a ground-set. A set-function b : 2S → Z∪{∞} is said to be submodular
if

(1.1) b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y )

holds for every X, Y ⊆ S. Similarly, p : 2S → Z∪{−∞} is said to be supermodular

if −p is submodular, i.e., if p satis�es (1.1) with the opposite inequality sign.

m : 2S → Z is said to be modular if m is both submodular and supermodular, i.e.,

m satis�es (1.1) with equality.

A set-function b is non-decreasing if b(X) ≤ b(Y ) whenever X ⊆ Y ⊆ S, and

non-increasing if −b is non-decreasing. The set-function b is said to be �nitely

generated if for every X ⊆ S with �nite b(X), there exists a �nite Y ⊆ X with

b(Y ) ≥ b(X). A non-decreasing �nitely generated upper-bounded submodular

set-function f : 2S → Z with f(∅) = 0 is said to be a polymatroid function.
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1.3 Submodular functions, matroids, and polymatroids

Normally, polymatroids and matroids are de�ned with a �nite ground-set. In

some cases however we have to deal with in�nite matroids or polymatroids, the

most important among those is the full linear matroid. For sake of simplicity,

the ground-set is supposed to be �nite unless the polymatroid is a linear one. If

f(s) ≤ k for every s ∈ S and some integer k, then we speak about a k-polymatroid

function.

If x : S → R and U ⊆ S, then let us use the notation x(U) =
∑

s∈U x(s).

Hence, x naturally extends to a 2S → R function. If S is �nite, then the polyhedra

P(f) = {x ∈ RS
+ : x(U) ≤ f(U) for every U ⊆ S}

and

B(f) = {x ∈ RS
+ : x(U) ≤ f(U) for every U ⊆ S, x(S) = f(S)}

associated with the polymatroid function f are called the polymatroid of f and the

base polyhedron of f resp. For in�nite S, these de�nitions are not totally correct,

however, in any case when we deal with in�nite polymatroids, the vectors will be

restricted to have �nite support.

If x : S → Z+, then we can be interested in the vector y : S → Z+, y ≤ x with

y ∈ P(f) which maximizes y(S). It is well-known that

(1.2) max{y(S) : y ≤ x, y ∈ P(f)} = min
U⊆S

(x(S − U) + f(U)).

This quantity is called the rank of x, and it is denoted by rf (x). We also have

to note that the rank function determines the polymatroid. For x ∈ Z+ we let

deff (x) = x(S)−rf (x), the defect or de�ciency of x. The rank has the submodular

property

rf (x) + rf (y) ≥ rf (x ∧ y) + rf (x ∨ y),

where ∨ and ∧ stands for the coordinate-wise maximum and minimum resp.

The (unique) maximal set U ⊆ S which gives equality in (1.2) is called the

span of x, and it is denoted by spf (x). It is also known that spf (x) = {s ∈ S :

rf (x + χs) = rf (x)}. The subsets of S arising as spf (x) for some vector x are

called the �ats of f . Then, U ⊆ S is a �at, if and only if f(U ∪ {s}) > f(U) for

each s ∈ S − U .

A 1-polymatroid is simply called matroid, and a 1-polymatroid function is also

called as a matroid rank function. If f : 2E → Z+ is a matroid rank function, then

f(F ) = rf (χF ) for every F ⊆ E.

7



1. PRELIMINARIES

1.4 Polymatroid operations and constructions

Let f : 2S → Z+ be a polymatroid function. First we recall some polymatroid

operations, which in fact can be derived from the analogous operations of ma-

troids. Therefore, let us start our list with the homomorphic map operation a.k.a.

homomorphic image which gives a way to construct every polymatroid from a

matroid.

(1.3i) Homomorphic image and prematroids of polymatroids. Let ψ :

S → R be a function. Now ψ(f) : 2R → Z+, U 7→ f(ψ−1(U)) is the

homomorphic image of f under ψ. Coherently to the above notations, if

n : S → Z, then by ψ(n) we mean the vector in ZR having ψ(n)(r) =∑
s∈ψ−1(r) n(s).

It is clear that matroid rank functions on E are exactly the polymatroid

functions f : 2E → Z+ having f(F ) ≤ |F | for every F ⊆ E. But there

is an even closer relation between polymatroids and matroids. For the

polymatroid function f , it is possible to de�ne a k-polymatroid function

g, the homomorphic image of which is f , s.t. g is the �most independent�

in some sense [22]. The ground set E of g is the disjoint union of sets Es
for s ∈ S with sizes |Es| ≥ f({s})/k. Let ϕ : E → S with ϕ(e) = s if

e ∈ Es, and

g(F ) = min
Y⊆F

(k|F − Y |+ f(ϕ(Y )) = min
U⊆S

(k|F −
⋃
s∈U

Es|+ f(U)).

It is a routine to prove that g is a k-polymatroid function, ϕ(g) = f ,

and for x ∈ ZE
+, x ≤ k we have x ∈ P(g) if and only if ϕ(x) ∈ P(f).

The polymatroid obtained is called a pre-k-polymatroid of f . For k = 1

we speak about prematroids. Note that a pre-k-polymatroid is uniquely

determined by f , k, and by the sizes |Es|, s ∈ S; and any of the pre-

matroids determines the original polymatroid. If M is any matroid with

rank function r then the prematroids of r are the parallel extensions of

M. If we consider a prematroid M then we tacitly assume that M and

the function ϕ : E → S is given.

After applying a matroid operation ζ to a prematroid M of a polyma-

troid, we can consider the polymatroid, the prematroid of which is ζ(M).

8



1.4 Polymatroid operations and constructions

Therefore, ζ induces a polymatroid operation for most of the usual ma-

troid operations.

(1.3ii) Restriction or deletion. If U ⊆ S, then f |2U is a polymatroid function

again. The new polymatroid function f |2U is said to be the restriction of

f to U , we say that it arises from f by deleting S − U .

(1.3iii) Translation. If n ∈ ZS
+ then f + n : 2S → Z+, U 7→ f(U) + n(U) is a

polymatroid function. It is clear that B(f + n) = B(f) + n.

(1.3iv) Deletion or upper bound. Let u ∈ ZS
+ be a bound vector. Then,

it can be checked that the polyhedron P(f) ∩ (u + RS
−) is a polyma-

troid, and it is determined by the polymatroid function f\u = ϕ(rM|Z)

where M is a prematroid of f and Z ⊆ E, ϕ(χZ) = u. The matroid

union theorem asserts that f\u is indeed a polymatroid function and

(f\u)(U) = minY⊆U(f(Y )+u(U−Y )). If M is a matroid and u ∈ {0, 1}S

then (rM\u)|2supp(u) = M|supp(u).

(1.3v) Direct sum. The direct sum of the polymatroid functions fi : 2Si → Z+,

i ∈ {1, 2}, where S1, S2 are disjoint sets, is f1 ⊕ f2 : 2S1∪̇S2 → Z+,

U 7→ f1(U ∩ S1) + f2(U ∩ S2).

(1.3vi) Dual. If u ∈ ZS
+ and us ≥ f({s}) for every s ∈ S, then f ∗u is de�ned

through B(f ∗u) which is the re�ection of B(f) to u/2. Clearly f ∗u(U) =

u(U)− f(S) + f(S − U) for U ⊆ S. If M is a matroid with ground-set S

and rank function r, then r∗1 is the rank function of M∗, where 1 denotes

the everywhere 1 vector.

(1.3vii) Sum. The sum of fi : 2S → Z+, i ∈ {1, 2} is simply f1 + f2. Now it

can be shown that B(f1 + f2) = B(f1) + B(f2). If Mi are matroids with

rank function ri, i ∈ {1, 2}, then M1 + M2 has rank function (r1 + r2)\1.
The sum is a special case of the homomorphic image: if we think that the

ground sets Si (= S) of fi are disjoint then f1 + f2 = ψ(f1 ⊕ f2) where

ψ(si) = s for s ∈ S.

(1.3viii) Contraction or lower bound. Contraction is de�ned through the pre-

matroid. Let z ∈ ZS
+, and let M be a prematroid with |Es| ≥ z(s), and

9



1. PRELIMINARIES

Z ⊆ E with ϕ(χZ) = u. Then, f/z = ϕ(M/Z). If l ∈ ZS
+ ∩ P(f) is

a vector below z with the largest sum of coordinates, then B(f/z) =

(B(f)− l)∩RS
+. It is well-known that f/z is a polymatroid function and

(f/z)(U) = min
Y⊇U

(f(Y )−l(Y )) = f(U∪spf (z))−f(spf (z))−z(U−spf (z)).

We say that the arising polymatroid function is obtained by contracting

z. It is also clear, that rf/z(x) = rf (x+ z)− rf (z).

If M is a matroid and z ∈ {0, 1}S then r/z = rM/Z where ϕ(χZ) = z.

Let Z ⊆ E. Then, the polymatroid function U 7→ f(U ∪Z)− f(Z) arises

as a special case of the contraction operation by taking z = f(Z)χz.

(1.3ix) Projection. Loosely speaking, projections are contractions where the

contracted element is not a member of the ground set. But more precisely,

let f ′, f : 2S → Z+ be polymatroid functions. Then we say that f ′ is a

projection of f if f − f ′ is non-decreasing. If f(X)− f ′(X) ≤ 1 for every

X ⊆ S, then we say that the projection is a 1-projection. For example,

contractions are projections. More specially, for f(s) > 0 and f ′ = f/χs,

i.e.

f ′(X) =

{
f(X)− 1, if f(X ∪ {s}) = f(X),

f(X), otherwise,

f ′ is a 1-projection of f . Every projection arises by consecutive ap-

plication of 1-projections. Let fi(X) = min(f ′(X) + i, f(X)), where

i = 0, 1, . . . , k = f(S) − f ′(S). Then, fk = f , f0 = f ′, the fi's are

polymatroid functions, and fi is a 1-projection of fi+1. In fact, each pro-

jection arises as a restriction of a contraction of a polymatroid extending

the original one.

Claim 1.4.1. If f, f ′ : 2S → Z+ are polymatroid functions, and f ′ is a

projection of f , then there exists a polymatroid function f̃ : 2S̃ → Z+,

f̃ |2S = f s.t. f ′ = (f̃/z)|2S for some z : S̃ → Z+.

Proof. By the above note, we have to deal only with 1-projections. Then,

let S̃ − S = {s}, and

f̃(X) =

{
f(X), if s /∈ X,

1 + f ′(X − {s}), otherwise.
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1.4 Polymatroid operations and constructions

(1.3x) Truncation. Given a bound k, let fk(U) = min(f(U), k). fk is equal to

ϕ(r(Mk)) where Mk is the k-truncation of the prematroid M of f .

(1.3xi) Dilworth truncation. Let S be �nite, and let f : 2S → Z+ be positive

on non-empty sets. Then, f̂(U) =
∑

U=U1∪̇U2∪̇...∪̇Ut, Ui 6=∅(f(Ui) − 1), if

U 6= ∅. Then, f̂ is a polymatroid function, called the Dilworth truncation

of f .

(1.3xii) Principal extension. This operation is to add a new element to the

ground-set of the polymatroid which is in general position in a �at. Hence,

let U ⊆ S be a �at, 0 < k ≤ f(U), and we associate a new member u

to U . Then, let f ′ : 2S∪{u} → Z+, s.t. f ′|2S = f ; and for X ⊆ S let

f ′(X ∪ {u}) = f(X) + k if f(X ∪U) > f(X), and f ′(X ∪ {u}) = f(X) if

f(X ∪ U) = f(X).

(1.3xiii) Polymatroids from intersecting submodular functions. The con-

struction of polymatroids with Dilworth truncation suggests a more gen-

eral one, which is again well-known from the literature [9; 11; 51]. Let

S be �nite, let ∅ ∈ L ⊆ 2S be a family which is closed under taking

intersections, and
⋃

L = S. Let b : L → Z+, b(∅) = 0 be a function

having the following intersecting submodular property. If U1, U2 ∈ L have

non-empty intersection, then let us assume the existence of a member of

L denoted by U1 ∨ U2 s.t. U1 ∪ U2 ⊆ U1 ∨ U2, and

b(U1) + b(U2) ≥ b(U1 ∩ U2) + b(U1 ∨ U2).

Then, b̂ : 2S → Z+,

(1.4) b̂(U) = min
F⊆L−{∅}, U⊆

S
F

∑
Ui∈F

b(Ui)

is a polymatroid function.

Choosing L = 2S, and b(U) = f(U) − 1 whenever U ∈ L − {∅}, we get

back (1.3xi).

For F1,F2 ⊆ L− {∅}, let us say that F1 is a re�nement of F2, if for each

U1 ∈ F1, there exists U2 ∈ F2 with U1 ⊆ U2. If U ⊆ S, then there exists a

11



1. PRELIMINARIES

unique family FU which gives equality in (1.4), and each F giving equality

in (1.4) re�nes FU . It is clear that FU is composed by pairwise disjoint

sets. If U1 ⊆ U2 ⊆ S, then FU1 re�nes FU2 . For want of better name, the

latter construction is also called Dilworth truncation.

As the polymatroid functions obtained by this construction have a par-

ticular importance in our study, it is worthwhile to say more about their

contractions. In fact, the contractions are again of this type. Let z ∈ ZS
+.

Let

Lz = {U ∈ L : U ∩ Z ∈ {∅, Z} for every Z ∈ Fspbb(z)},
and let us de�ne bz : Lz → Z+ by

bz(U) = b(U)−
∑

X∈Fspbb(z)[U ]

b(X)− z(U − spbb(z)).

We only have to de�ne the operation ∨z. Thereafter, it will be clear that
b̂z = b̂/z.

Let U1, U2 ∈ Lz with U1 ∩ U2 6= ∅. By applying submodularity to b, we

get

bz(U1) + bz(U2) ≥

b(U1 ∩ U2)−
∑

X∈Fspbb(z)[U1∩U2]

b(X)− z(U1 ∩ U2 − spbb(z))+

b(U1 ∨ U2)−
∑

X∈Fspbb(z)[U1∪U2]

b(X)− z(U1 ∪ U2 − spbb(z)) ≥

bz(U1 ∩ U2) + b(U1 ∨ U2)−
∑

X∈Fspbb(z)[U1∨U2]

b(X)− z(U1 ∨ U2 − spbb(z)).

It is not hard to see (using submodularity) that U1 ∨ U2 can be replaced

by a member of Lz:

Proposition 1.4.2. If U ∈ L, then there exists U ′ ∈ Lz s.t. U ⊆ U ′ and

b(U)−
∑

X∈Fspbb(z)[U ]

b(X)− z(U − spbb(z)) ≥ bz(U
′).

12



1.4 Polymatroid operations and constructions

Hence,

bz(U1) + bz(U2) ≥ bz(U1 ∩ U2) + bz((U1 ∨ U2)
′)

for the set (U1 ∨ U2)
′ given by Proposition 1.4.2.

For Z ⊆ S, by LZ and bZ , we mean Lz and bz with z = b̂(Z)χZ .

13
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Chapter 2

Introduction to polymatroid

matching

This chapter is devoted to present the most important notions and statements

from the basics of polymatroid parity. Most of the results are from [10; 33; 34; 35]

even if they are presented in a technically di�erent way.

2.1 Matchings and covers of polymatroids

In what follows, S is a �nite ground-set and f : 2S → Z+ is a polymatroid function.

We use the shortened notations r = rf , sp = spf , whenever this does not cause

ambiguities. An even vector m : S → Z+ is said to be a polymatroid matching or

shortly matching if m ∈ P(f). Let

ν(f) = max{m(S)/2 : m is a matching of f}.

In parallel with this notion, the even vector c is said to be a polymatroid cover or

shortly cover, if r(c) = f(S). Let

%(f) = min{c(S)/2 : c is a cover of f}.

Before going further, as an illustration let G = (V,E) be an undirected graph

without isolated vertices, and let q : 2E → Z be the set-function s.t. q(F ) = |
⋃
F |

for every F ⊆ E, i.e., the number of end-vertices of the edges of F . It can be seen

easily that q is a 2-polymatroid function. Moreover, if M ⊆ E is a matching of
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2. INTRODUCTION TO POLYMATROID MATCHING

the graph G, then 2χM is a polymatroid matching of q. Similarly, the supports of

polymatroid matchings of q are exactly the matchings of the graph. Furthermore,

%(q) gives the minimum number of edges covering all the vertices, i.e., an edge

cover in standard graph theoretic terminology. The relation of ν(q) and %(q) is

well-known by Gallai's classical theorem [18]:

Theorem 2.1.1 (Gallai). For any undirected graph G = (V,E) without isolated

vertices, we have

ν(q) + %(q) = |V |.

The two quantities are related similarly for general polymatroids:

Theorem 2.1.2 (Lovász). For any polymatroid function f : 2S → Z+, we have

ν(f) + %(f) = f(S).

Claim 2.1.3. For any cover c of f , there exists a matching m ≤ c with m(S)/2 ≥
f(S)− c(S)/2.

Proof. Letm = c at the beginning. Let us resetm tom−2χs as long as there exists

s ∈ supp(m) with r(m−2χs) ≥ r(m)−1. Finally,m will be a matching. Indeed, let

m′ be a maximum matching having m′ ≤ m and let s ∈ S with m(s)−m′(s) > 0.

Then, r(m − 2χs) ≤ r(m) − 2, and this implies r(m − kχs) ≤ r(m) − k, where

k = m(s)−m′(s). By submodularity,

r(m′+kχs)+r(m−kχs) ≥ r((m′+kχs)∧(m−kχs))+r((m′+kχs)∨(m−kχs)) =

r(m′) + r(m) ≥ r(m′) + r(m− kχs) + k,

contradicting the maximality of m′. Hence, m is a matching, r(m) ≥ f(S) −
(c(S)/2−m(S)/2), and m(S)/2 ≥ f(S)− c(S)/2 �nally.

Proof of Theorem 2.1.2. To see ≤, let m be a maximum matching. Then, by

increasing m by 2 on at most f(S) − r(m) elements of S, we obtain a cover c.

Thus, %(f) ≤ m(S)/2 + f(S) − r(m) = f(S) − ν(f). The other direction follows

from Claim 2.1.3.
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2.1 Matchings and covers of polymatroids

The matroid matching problem (a.k.a. matroid parity or polymatroid parity

problem) is to determine ν(f) (equivalently %(f)) in the sense of good characteri-

zation, as well as in an algorithmic sense. For T ⊆ S we can ask also for the more

general quantity

δT (f) = min{|{s ∈ S : xs 6≡ χT (s)}| : x ∈ B(f) integer},

where, by ≡ we always mean the coordinate-wise congruency relation modulo 2.

As B(f + χT ) = B(f) + χT , we have δT (f) = δ∅(f + χT ), 2ν(f) = f(S) − δ∅(f),

and therefore 2%(f) = f(S)+ δ∅(f). Hence the good characterizations to ν(f) and

%(f) imply each other and the good characterization to δT (f) is equivalent to a

good characterization of the maximum matching of a translation of f .

The computation of ν(f) is hard, more precisely it may need an exponential

number of oracle calls if f is given by a value giving oracle (Jensen and Korte [26]

and Lovász [35]).

Theorem 2.1.4. If a 2-polymatroid function f : 2S → Z+ is given by the oracle

giving the values of f , then at least 2Ω(|S|) oracle calls are needed to determine

ν(f),

Proof. Let ν ∈ Z+, and let us de�ne f : 2S → Z+ by

f(U) =


2|U |, if |U | < ν,

2ν − 1 or 2ν, if |U | = ν,

2ν, if |U | > ν.

It can be checked, that these are all 2-polymatroid functions. Let us assume that

one has an algorithm computing ν(f). Then it has to ask f(U) for all the subsets

of S of size ν, otherwise it cannot determine whether ν(f) = ν − 1 or ν(f) = ν. If

ν ≈ S/2, then 2ν = 2Ω(|S|).

Classical NP-complete problems also can be formulated as matroid matching.

We can rid out the oracle call so that computing the maximum size clique of graphs

becomes a special case. Let G = (V,E) be an undirected graph, and let us modify

the above construction as follows. If X ⊆ V , |X| = ν, then let f(X) = 2ν if

X is a clique, and f(X) = 2ν − 1 otherwise. As the problem of determining the

existence of a clique of size ν is NP-complete, so is the matching problem for such

2-polymatroids.
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2. INTRODUCTION TO POLYMATROID MATCHING

Parity problems may also appear in somewhat di�erent forms in applications.

Let us recall some of them.

The �rst special case is the 2-polymatroid parity problem, which is the parity

problem of 2-polymatroid functions (as this is suggested by its name). In fact,

polymatroid parity can be reduced to 2-polymatroid parity. For this, let p : 2A →
Z+ be a pre-2-polymatroid of f , and ϕ : A → S the homomorhic map with

ϕ(p) = f . Then, an even vector m : A → Z+ is a matching of p if and only if

ϕ(m) is a matching of f . Hence, it would be su�cient to develop the theory to

this special case, as it was done by Lovász. However, it is more convenient to use

the general form in some applications. Moreover, if we follow Lovász' way, then

some important notions and phenomena have to be introduced or shown in both

frameworks. Consequently, we develop the basics in the technically bit more messy

polymatroid parity framework.

Another form is the matroid parity problem, which is as follows. Let M be a

matroid on ground-set E and let A ⊆
(
E
2

)
be a �nite set of (not necessarily disjoint)

pairs. If F ⊆ E andM ⊆ A, then we use the notations rM(F ∪M) = rM(F ∪
⋃
M)

and spM(F ∪M) = spM(F ∪
⋃
M). We say thatM ⊆ A is a matching if rM(M) =

2|M |. Then p : 2A → Z+ de�ned by p(B) = rM(
⋃
B) is a 2-polymatroid function,

and M ⊆ A is a matching if and only if m : A → Z+, m = 2χM is a matching of

p.

The last problem is the maximization of smooth submodular functions. Let

b : 2S → Z+ be a submodular function, which is smooth in the sense that |b(X)−
b(Y )| ≤ |X∆Y | if X, Y ⊆ S, (where ∆ stands for the symmetric di�erence).

While the maximization of submodular functions is NP-hard in general, it can be

tractable for smooth submodular functions, if the corresponding matching problem

behaves well. For this, X 7→ b(X) − b(∅) + |X| is a 2-polymatroid function, and

the sets maximizing b are exactly the supports of the maximum matchings of b.

2.2 Circuits and �owers

In order to study the structure of even vectors of polymatroids, let us recall the

following notions. The 1-de�cient vectors are called �owers, i.e. x : S → Z+ is a

�ower if r(x) = x(S) − 1. The inclusionwise minimal �owers are called circuits,

i.e. c : S → Z+ is a circuit if r(c) = c(S) − 1 and r(c − χs) = c(S) − 1 for every
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2.2 Circuits and �owers

s ∈ supp(c). Similarly, the 2-de�cient vectors are called double �owers and the

inclusionwise minimal double �owers are called double circuits. More precisely, a

vector w : S → Z+ is a double circuit if w is 2-de�cient, and w − χs is 1-de�cient

for every s ∈ supp(w). If x is a (double) �ower and U is the unique inclusionwise

minimal set giving equality in (1.2), then by restricting x to U we get the unique

(double) circuit c ≤ x. If x is a (double) �ower, then its unique (double) circuit

is denoted by C(x). We say that the double �ower x is compatible if for every

s ∈ supp(C(x)), the support of the unique circuit of the �ower C(x)−χs does not
contain s.

We will see in Theorem 2.3.1 that from the viewpoint of parity the compatible

double circuits are particularly interesting. In some cases however we should deal

with non-compatible double circuits too, as compatible double circuits can turn

into non-compatible ones at certain polymatroid operations. (E.g. at contraction,

see the example after Claim 2.6.5.) In the following paragraphs if we talk about a

double circuit of a matroid M with ground-set E, then we mean a set D ⊆ E, s.t.

r(D) = |D| − 2, and r(D − {e}) = |D − {e}| − 1 for every e ∈ D. Hence, this is a

restriction of the polymatroidal notion, here we are considering only {0, 1}-valued
vectors (the characteristic vectors of the matroidal double circuits). If D ⊆ E is a

double circuit, then the dual of M|D is a matroid of rank 2 without loops, showing

that there exists a so called principal partition D = D1∪̇D2∪̇ . . . ∪̇Dd, d ≥ 2, s.t.

the circuits of D are exactly the sets of form D −Di, 1 ≤ i ≤ d. We say that D

is non-trivial if d ≥ 3, and trivial otherwise. A trivial double circuit is simply the

direct sum of two circuits. An exact relation between matroidal and polymatroidal

double circuits is as follows:

Proposition 2.2.1. Let M be a prematroid of f with ground set E, D ⊆ E and

ϕ(χD) = w. Then D is a double circuit of M if and only if w is a double circuit

of f .

Let M be a prematroid of f and w be a double circuit of f such that there is

a set D ⊆ E with ϕ(χD) = w. By Proposition 2.2.1, D is a double circuit of M,

thus it has a principal partition D = D1∪̇D2∪̇ . . . ∪̇Dd′ . We de�ne the principal

partition of w as follows. Due to the structure of prematroids it is easy to check

that supp(w) has a partition U0∪̇U1∪̇U2∪̇ . . . ∪̇Ud (called also principal partition)

with the property that each set Dj is either a singleton belonging to some Es with
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2. INTRODUCTION TO POLYMATROID MATCHING

ws ≥ 2 and s ∈ U0, or is equal to D ∩
⋃
s∈Uh

Es for some 1 ≤ h ≤ d. Note that a

partition U0∪̇U1∪̇ . . . ∪̇Ud of supp(w) is the principal partition of w if and only if

w− χs is a circuit of f and ws ≥ 2 whenever s ∈ U0, moreover, w|U−Ui
is a circuit

of f for each 1 ≤ i ≤ d. Hence, the double circuit w is compatible if U0 = ∅. The
number d is called the degree of the compatible double circuit. The compatible

double �ower is non-trivial (NTCDF) if the degree of its double circuit is at least

3. Hence, w : S → Z+ is a compatible double circuit if and only if supp(w) has a

partition U1, U2, . . . , Ud, d ≥ 2 called principal partition, s.t. if x ≤ w, then

r(x) =


x(S)− 2, if x = w,

x(S)− 1, if x(Ui) = w(Ui) for exactly d− 1 of the Ui's,

x(S), if x(Ui) = w(Ui) for at most d− 2 of the Ui's.

Given a double circuit w, an independent vector can be reached either by decreas-

ing w by 2 on an entry, or by 1 on two di�erent entries. If an independent vector

can be reached the �rst way, then w is not compatible; while if we have only the

second possibility, then w is compatible. This may be the most expressive view of

compatibility. An important consequence is the following:

Corollary 2.2.2. If x : S → Z+ is an even double �ower, then either there exists

s ∈ supp(x) s.t. x−2χs is a matching and x is non-compatible, or x is a compatible

double �ower.

2.3 Structure of even vectors in polymatroids

Let ν = ν(f), and let H be the hypergraph with vertex-set S and hyperedge-

set E = {supp(C(x)) : x is an even �ower with r(x) = 2ν + 1}. This section

presents the theorem known as Lovász' structure theorem on polymatroid match-

ings. Of course we formalize it in terms of polymatroids.

Theorem 2.3.1 (Lovász). Let f : 2S → Z+ be a polymatroid function. Then, at

least one of the following possibilities holds.

(2.1i) f(S) = 2ν + 1.

(2.1ii) There exist a partition S = S1∪̇S2, Si 6= ∅ s.t. ν = ν(f |2S1 ) + ν(f |2S2 ).
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(2.1iii) There exists s ∈ S s.t. f(s) ≥ 2 and s ∈ sp(m) for each maximum

matching m of f .

(2.1iv) f has a non-trivial compatible even double �ower x with x(S) = 2ν + 2.

Proof. Case 1. There exists s ∈ S with f(s) < 2. Then (2.1ii) holds for S1 = {s}
and S2 = S − S1.

Case 2. f(s) ≥ 2 for every s ∈ S.
Case 2.1. There exists s ∈ S s.t. s ∈ sp(m) for each maximum matching m of

f , i.e. (2.1iii) holds.

Case 2.2. For each s ∈ S, there exists a maximum matching m s.t. s /∈ sp(m).

Claim 2.3.2. Then,
⋃
E = S.

Proof. Let us choose s ∈ S. As (2.1iii) does not hold, there exists a maximum

matching m s.t. r(m + 2χs) ≥ m(S) + 1. But m is a maximum matching, we

cannot have r(m + 2χs) ≥ m(S) + 2. Therefore, m + 2χs is a �ower, with s ∈
supp(C(m+ 2χs)).

Claim 2.3.3. If S = S1∪̇S2, Si 6= ∅ s.t. each hyperedge of H is contained either

by S1 or by S2, then (2.1ii) holds for this choice of S1 and S2.

Proof. Let m be a maximum matching. If m(Si) ≥ 2ν(f |2Si ) for i ∈ {1, 2}, then
we are done. Thus, let m1 be a maximum matching of f |2S1 and m1(S1) > m(S1).

Choose m1 and m s.t. (m1 ∧m)(S) is maximum.

Then, for every s ∈ S1, either s ∈ sp(m) or m1(s) ≤ m(s). Otherwise, let s /∈
sp(m) s.t. m1(s) > m(s). Hence m+2χs is a �ower with circuit c, s ∈ supp(c). As

c 6≤ m1 and c(s) ≤ m(s)+2 ≤ m1(s), there exists an u ∈ S−{s} s.t. c(u) > m1(u).

Then m′ = m+ 2χs − 2χu is a matching having (m1 ∧m)(S) < (m1 ∧m′)(S).

As m1(s) ≤ m(s) for each s ∈ S1 − sp(m), we have sp(m1) ⊆ S − sp(m),

hence m1 + 2χs and m + 2χs are �owers. Let us �x s ∈ S1 − sp(m). Then, we

have C(m1 + 2χs) = C(m + 2χs). Otherwise, let x, y ∈ S1 s.t. C(m1 + 2χs)(x) >

C(m+2χs)(x) and C(m+2χs)(y) > C(m1+2χs)(y). Replacingm bym+2χs−2χy,

and m1 by m1 + 2χs − 2χx increases (m1 ∧m)(S).

Let s ∈ S s.t. m1(s) > m(s). Then there exists a maximum matching n s.t.

s /∈ sp(n). Let us choose m1, m, and n so as to maximize (m ∧ n)(S) (under the

primary condition that (m1 ∧m)(S) is maximum).
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Since m1(s) > m(s), we have s ∈ sp(m). We claim there exists a z /∈ sp(m)

with n(z) > m(z). Otherwise, we have n(S− sp(m)) ≤ m(S− sp(m)), n(sp(m)) <

f(sp(m)) as s ∈ sp(m) − sp(n), and f(sp(m)) = m(sp(m)). The sum of the last

three inequalities gives n(S) < m(S) which is a contradiction.

If z ∈ S2, then supp(C(m+2χz))∩S1 = ∅. Choose x s.t. C(m+2χz)(x) > n(x).

As n(z) > m(z), z 6= x. Then replacing m by m + 2χz − 2χx maintains m1 ∧m
but increases (m ∧ n)(S).

If z ∈ S1, then we recall C(m + 2χz) = C(m1 + 2χz). Choose x s.t. C(m +

2χz)(x) > n(x). Again, z 6= x. Then replacing m1 by m1 + 2χz − 2χx and m by

m+ 2χz − 2χx maintains (m1 ∧m)(S) but increases (m ∧ n)(S).

Claim 2.3.4. If H is connected, then (2.1i) or (2.1iv) holds.

Proof. Two circuits c1 and c2 are said to be far if ci = C(m+2χsi
) for a maximum

matching m s.t. r(m+2χs1 +2χs2) = 2ν+2. Therefore, si /∈ supp(C(m+2χs3−i
)).

If f(S) ≤ 2ν + 1, then (2.1i) holds and we are done, hence far circuits C(m+

2χs1) and C(m + 2χs2) exist. Let us choose m, s1, and s2 s.t. the distance of the

hyperedges supp(C(m + 2χs1)) and supp(C(m + 2χs2)) in the line-graph of H is

as small as possible.

Case 1. Suppose �rst that supp(C(m + 2χs1)) ∩ supp(C(m + 2χs2)) 6= ∅. As

r(m+2χs1 +2χs2) = 2ν+2, then by Corollary 2.2.2, either m+2χs1 +2χs2−2χu is

a matching for some u ∈ supp(m+2χs1 +2χs2) orm+2χs1 +2χs2 is a double-�ower

with r(m+ 2χs1 + 2χs2) = 2ν + 2. In the latter case, as m+ 2χs1 + 2χs2 contains

two di�erent circuits with intersecting supports, the double-�ower is compatible

and non-trivial.

Case 2. Next, supp(C(m + 2χs1)) ∩ supp(C(m + 2χs2)) = ∅. Then, there is

an intermediate circuit C(m′ + 2χx) on a shortest path between C(m+ 2χs1) and

C(m+ 2χs2). Let us choose m
′ so as to maximize (m′ ∧ (m+ 2χs1 + 2χs2))(S). As

r(m+2χs1 +2χs2) > r(m′+2χx), then there exists y /∈ sp(m′+2χx) s.t. (m+2χs1 +

2χs2)(y) > (m′+2χx)(y). Thus, C(m′+2χx) and C(m′+2χy) are far circuits and

supp(C(m′ + 2χx)) ∩ supp(C(m′ + 2χy)) = ∅. If C(m′ + 2χy) ≤ m+ 2χs1 + 2χs2 ,

then C(m′ + 2χy) = C(m + 2χs1) or C(m′ + 2χy) = C(m + 2χs2) (as these are

the only circuits in m + 2χs1 + 2χs2), therefore C(m′ + 2χx) and C(m + 2χs1),

or C(m′ + 2χx) and C(m + 2χs2) would be far with smaller distance. Hence,
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C(m′ + 2χy) 6≤ m+ 2χs1 + 2χs2 , and we can choose z s.t. C(m′ + 2χy)(z) > (m+

2χs1 +2χs2)(z). Note that z 6= y, by the choice of y. Let m′′ = m′+2χy−2χz. By

supp(C(m′+2χx))∩ supp(C(m′+2χy)) = ∅, we have C(m′+2χx) = C(m′′+2χx).

Then, (m′′ ∧ (m+ 2χs1 + 2χs2))(S) > (m′ ∧ (m+ 2χs1 + 2χs2))(S).

2.4 Projections and contractions

Let f again be a polymatroid function. Projections and contractions play an

important role in the min-max formulas to ν(f), these min-max formulas are based

on the following estimations:

Claim 2.4.1. If f ′ is a 1-projection of f , then ν(f ′) ≥ ν(f)− 1.

Proof. Let m be a maximum matching of f . If rf ′(m) = m(S), then m is a

matching of f ′. Otherwise, rf ′(m) = m(S) − 1, i.e., m is a �ower of f ′. Then,

there exists s ∈ supp(m) s.t. m− 2χs is a matching of f ′.

Hence, let f ′ be a projection of f . Then,

ν(f) ≤ f(S)− f ′(S) + ν(f ′).

It is also clear, that if S1, S2, . . . , St is a partition of S, then

(2.2) ν(f) ≤
t∑

j=1

ν(f |2Sj ).

Last,

ν(f) ≤
⌊
f(S)

2

⌋
.

These together imply that if S1, S2, . . . , St is a partition of S, then

(2.3) ν(f) ≤
t∑

j=1

⌊
f(Sj)

2

⌋
,
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2. INTRODUCTION TO POLYMATROID MATCHING

and

(2.4) ν(f) ≤ f(S)− f ′(S) +
t∑

j=1

⌊
f ′(Sj)

2

⌋
.

The point throughout this work is to explore some classes of polymatroids where

equality can be obtained in (2.3) or in (2.4). It is not hard to show a polymatroid

which does not have equality in (2.3). If |S| = 3 and f(X) = |X|+1 for each non-

empty set X ⊆ V , then ν(f) = 1 while the minimum in the right hand side of (2.3)

is 2. However, for the projection f ′(X) = |X|, we have ν(f) = f(S)−f ′(S)+ν(f ′)

and we have equality in (2.4) when S is partitioned into singletons. In general,

we do not know examples where equality cannot be obtained in (2.4). However,

in order to obtain a min-max relation to ν(f) we have to polynomially encode f ′

and we have to show that f ′ is a projection of f . It is unlikely that this task can

be done in general, the only hope is that f is from a natural class of polymatroids

and the projection is de�ned by a contraction of a natural extension of f .

We say that the projection f ′ of f compresses the compatible double circuit w

if rf ′(c) < rf (c) for every circuit c of w.

Theorem 2.4.2. Let y be an even NTCDF with f(y) = 2ν(f) + 2. If the 1-

projection f ′ compresses the double circuit of y, then ν(f ′) = ν(f)− 1.

Proof. Suppose for contradiction that m is a matching of f ′ and m(S) = 2ν(f).

Let moreover (m∧y)(S) be as large as possible. As rf ′(y) ≥ rf (y)−1 = 2ν(f)+1 >

rf ′(m), let s /∈ spf ′(m) s.t. y(s) > m(s). Then, we have 2ν(f)+1 ≥ rf (m+2χs) ≥
rf ′(m+ 2χs) ≥ 2ν(f) + 1, so m+ 2χs is a �ower of f and also of f ′. As f − f ′ is

non-decreasing, rf (x) = rf ′(x) for every x ≤ m + 2χs. Therefore, Cf (m + 2χs) =

Cf ′(m + 2χs). Let c be this circuit. If c 6≤ y, then let u s.t. c(u) > y(u). Then

m′ = m+2χs− 2χu is a matching of f s.t. (m′∧ y)(S) > (m∧ y)(S). Thus, c ≤ y.

But this contradicts the fact that the 1-projection compresses the circuits of the

�ower y.
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2.5 Linear polymatroids and modular lattice of

�ats

All the matroid parity problems which were solved in the seventies were reduced

to the matching problem of graphs or to the matroid intersection problem. The

very �rst case which is unlikely to be reduced to these two easier problems and

happened to be solvable, is the parity problem of linear polymatroids.

Let L be a full linear space and let A be a �nite set of its subspaces. Then the

dimension is a natural polymatroid function on the subsets of S = L∪A. Lovász'
theorem on the matching problem of linear matroids is the following:

Theorem 2.5.1 (Lovász). Let A be �nite set of subspaces of a linear space L and

let S = A ∪ L. Then,

(2.5) ν(dim |2A) = min

(
dim(Z) +

t∑
j=1

⌊
(dim /Z)(Aj)

2

⌋)
.

where the minimum is taken for all subspaces Z of L and for all partitions

A1, A2, . . . , At of A.

The matroids considered in daily life are unlikely to be non-linear, thus Lovász'

work have useful consequences in both theory and practice. Interesting engineering

applications are the problem of pinning down a minimum number of vertices of

a planar bar-and-joint framework to obtain a rigid framework or the unique solv-

ability problem of electrical networks containing gyrators. For other combinatorial

applications see [38; 49].

We have to note that it is not immediately clear that (2.5) gives a good charac-

terization. If the vector space is over the rational �eld, then the numbers de�ning

Z can be too large as compared to the size of the de�nition of the original problem.

This is not a problem for small �nite �elds and in fact can be solved also for the

rational �eld, see [45; 46; 56].

The only property of full linear matroids used in the proof of Theorem 2.5.1

is the modular structure of the lattice of �ats of the polymatroid function dim :

2S → Z+. We say that a polymatroid has a modular lattice of �ats if

f(X) + f(Y ) = f(X ∩ Y ) + f(X ∪ Y ),
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2. INTRODUCTION TO POLYMATROID MATCHING

for any two �ats X, Y . It is clear that full linear polymatroids have modular lattice

of �ats. As we suggested, Theorem 2.5.1 can be generalized to polymatroids with

modular lattice of �ats:

Theorem 2.5.2. Let f : 2S → Z+ be a polymatroid function with modular lattice

of �ats. Then, for any A ⊆ S,

(2.6) ν(f |2A) = min

(
f(Z) +

t∑
j=1

⌊
(f/Z)(Aj)

2

⌋)
.

where the minimum is taken for all Z ⊆ S and for all partitions A1, A2, . . . , At of

A.

Another notable example for polymatroids with modular lattice of �ats arises

in the matching problem of graphs. Now, let G = (V,E) be an undirected graph,

and let q′ : 2V ∪E → Z+ be the 2-polymatroid function with q′(U) = |(U ∩ V ) ∪⋃
(U ∩E)|. Then, q′ has modular lattice of �ats, as it arises from the free matroid

on V by adding some �ats of rank 2. Moreover, q′|2E = q, where q is the 2-

polymatroid function de�ned in Section 2.1. Therefore, the maximum matching

of G has ν(q′|2E) edges, which has the characterization as in Theorem 2.5.2. After

some technical simpli�cations, it gives back the Berge-Tutte formula.

Theorem 2.5.3 (Berge and Tutte, [1]). Let G = (V,E) be an undirected graph.

Then the maximum matching of G has cardinality

min
X⊆V

(
|X|+

∑
C∈C

⌊
|C|
2

⌋)
,(2.7)

where C denotes the set of vertex-sets of the components of G[V −X].

Proof. First, we have

ν(q′|2E) = |X|+
∑⌊

|X ∪
⋃
Ei| − |X|
2

⌋
for some X ⊆ V and a partition E1, E2, . . . , Et of E. Then, by choosing t to be

minimal, we have (X ∪
⋃
Ei) ∩ (X ∪

⋃
Ej) = X if i 6= j, and there is no edge

between (
⋃
Ei)−X and (

⋃
Ej)−X. Finally,

|X|+
∑⌊

|X ∪
⋃
Ei| − |X|
2

⌋
≥ |X|+

∑
C∈C

⌊
|C|
2

⌋
.
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2.6 The double circuit property

Suppose that we have a polymatroid coming from a combinatorial application. It

is a common experience that these polymatroids happen to be non-linear once in a

blue moon. Though linearity can be clear from the de�nition of the polymatroid,

we still might not be aware of a deterministic polynomial algorithm represent-

ing the polymatroid. Having an explicit representation is indispensable either for

de�ning Z in (2.5) or to run an algorithm which computes a maximum matching

and a dual certi�cate proving that equality holds in (2.5). The most simple exam-

ples are the transversal matroid and the 2-dimensional generic rigidity matroid;

the phenomenon elaborated more thoroughly in Chapter 3. However, we are not

�nished with having a linear representation. Even if it is at hand, the obtained

min-max relation (2.5) will not re�ect the combinatorial behavior of the original

polymatroid, since by the embedding into a full linear space the contraction in the

dual side of (2.5) hardly has any combinatorial meaning.

A starting point to address this problem is an abstract generalization of Theo-

rem 2.5.1 by Dress and Lovász [10]. Their motivation was to handle more general

matroids then linear ones. We use their result in a completely di�erent direction.

Our polymatroids are linear (except those presented in Chapter 7) but not full

ones. Hence, we can keep the combinatorial structure at contractions and we will

be able to explore some graph theoretical applications. Dress and Lovász observed

that the tractability of the linear and some simple combinatorial special cases is

due to a common abstract property which is more general than modularity. Re-

formulated in polymatroidal terms, they say that the polymatroid function f has

the double circuit property (DCP for short) if

(2.8) (f/z)

(
d⋂
i=1

spf/z(xi)

)
> 0

holds for each NTCDC x of each contraction f/z of f , where x1, x2, . . . , xd are the

circuits of x. Then, we get:

Theorem 2.6.1. If f is a polymatroid function which has the DCP and A ⊆ S,

then

ν(f |2A) = min

(
f(Z) +

t∑
j=1

⌊
(f/Z)(Aj)

2

⌋)
,
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where the minimum is taken for all Z ⊆ S and for all partitions A1, A2, . . . , At of

A.

Proof. First, we prove that there exists a vector z : 2S → Z+ and a partition

A1, A2, . . . , At s.t.

(2.9) ν(f |2A) = rf (z) +
t∑

j=1

⌊
(f/z)(Aj)

2

⌋
.

Let z ∈ ZS
+ be a vector which gives equality in ν(f |2A) = rf (z) + ν((f/z)|2A)

and maximizes rf (z) among these vectors. Moreover, let A1, A2, . . . , At a partition

of A s.t. ν((f/z)|2A) =
∑t

j=1 ν((f/z)|2Aj ), and in addition, let t be as big as

possible. We claim that ν((f/z)|2Aj ) =
⌊

(f/z)(Aj)

2

⌋
. Let us apply Theorem 2.3.1

to (f/z)|2Aj . In case (2.1i), we are done, while in case (2.1ii), there would be a

partition with larger t. In case (2.1iii) we replace z by z + χs. Then, rf (z + χs) =

rf (z) + 1, ν((f/z)|2Aj ) drops by 1 and the other ν((f/z)|2Ai )'s do not increase,

which contradicts the choice of z. For case (2.1iv), let s /∈ spf (z) be an element

which is in the span of each circuit of the NTCDC. Then, by replacing z by

z + χs, ν((f/z)|2Aj ) drops by 1, the other ν((f/z)|2Ai )'s do not change, which

again contradicts the choice of z. Hence, we have (2.9).

Next, we prove that supp(z) ⊆ sp(z). Let us choose z and A1, A2, . . . , At so

that �st, z(supp(z) − sp(z)) is as small as possible, and second, t is as small as

possible under the primary condition. Then, spf/z(Ai) ∩ spf/z(Aj) = spf (z) for

every 1 ≤ i < j ≤ t. Otherwise, we could delete the partition members Ai and Aj
and introduce a new member Ai ∪Aj. Therefore, if s ∈ supp(z)− sp(z), then s is

contained by at most one of the spf/z(Ai)'s, and we could replace z by z−χs.

It is a frequent way of de�ning polymatroids in combinatorial applications as

homomorphic maps of matroids. The matching problem of these polymatroids are

tractable if the underlying matroids are DCP:

Theorem 2.6.2. Let M be a matroid with ground-set E which has DCP. Let

moreover A ⊆ 2E, and f : 2E∪A → Z+, f(F ∪ B) = rM(F ∪
⋃
B) for F ⊆ E and

B ⊆ A. Then, we have

(2.10) ν(f |2A) = min

(
f(Z) +

t∑
j=1

⌊
(f/Z)(Aj)

2

⌋)
,
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where the minimum is taken for all Z ⊆ E and for all partitions A1, A2, . . . , At of

A.

Proof. Setting A′ =
{(

Ai

2

)
: Ai ∈ A

}
, it is natural to consider the matching prob-

lem of the 2-polymatroid f ′ : 2E∪A
′ → Z+, the values of f ′ are inherited again

from rM. Then, ν(f |2A) = ν(f |2A′ ). First, it is not hard to see that the DCP of M

implies that for any even NTCDC x of f ′/Z, Z ⊆ E with supp(x) ⊆ A′ we have

(2.11) (f ′/Z)

(
d⋂
i=1

spf ′/Z(xi)

)
> 0,

see e.g. [51]. Then, ν(f ′|2A′ ) = f ′(Z) +
∑t

j=1

⌊
(f ′/Z)(A′j)

2

⌋
for some Z ⊆ E and a

partition A′
1, A

′
2, . . . , A

′
t of A

′. It is not hard to see, that then ν(f |2A) = f(Z) +∑t′

j=1

⌊
(f/Z)(Aj)

2

⌋
for some Z ⊆ E and a partition A1, A2, . . . , At′ of A.

Now we turn to a detailed examination of double circuits. If we consider a

NTCDC x with principal partition U1, U2, . . . , Ud, then we tacitly assume that the

circuits are denoted by x1, x2, . . . , xd, where

(2.12) xi(s) =

{
x(s), if s ∈ Uj, j 6= i,

0, otherwise.

Claim 2.6.3. Let x be a NTCDC of the polymatroid function f .

(2.13i) If i ∈ T ⊆ [d], then

(2.14) f

(⋂
t∈T

sp(xt)

)
≤ f

 ⋂
t∈T−{i}

sp(xt)

− x(Ui) + 1.

(2.13ii) If T ⊆ [d], then

(2.15) f

(⋂
t∈T

spf (xt)

)
≤

∑
t∈[d]−T

x(Ut) + |T | − 2.

(For notational convenience we assume
⋂
t∈∅ sp(xt) = sp(x).)

29



2. INTRODUCTION TO POLYMATROID MATCHING

Proof. For (2.13i), by submodularity,

f

(⋂
t∈T

sp(xt)

)
+f

sp(xi) ∪
⋂

t∈T−{i}

sp(xt)

 ≤ f

 ⋂
t∈T−{i}

sp(xt)

+f (sp(xi)) .

The �rst statement follows from f
(
sp(xi) ∪

⋂
t∈T−{i} sp(xt)

)
= f(sp(x)) for which

we use supp(x) ⊆ sp(xi) ∪
⋂
t∈T−{i} sp(xt) ⊆ sp(x). If |T | ≤ 1, then (2.15) holds.

Otherwise, it follows from (2.13i) by induction on |T |.

Hence, if we need f
(⋂

t∈T sp(xt)
)
to be large, then the most what we can obtain

is equality in (2.15). If the lattice of �ats is modular, then equality holds in (2.15).

This proves Theorem 2.5.2 and Theorem 2.5.1.

Theorem 2.6.4. If f : 2S → Z+ is a polymatroid function with modular lattice of

�ats, then it has the DCP.

Proof. First, it is clear that contractions of polymatroids with modular lattice of

�ats have again modular lattice of �ats, by the de�nition of contraction. The

proof is obtained by following the proof of Claim 2.6.3. By the modularity, we

have equality in (2.14). Then, we also have equality everywhere in the second

part, as well as in (2.15).

The de�nition of the DCP speci�es a condition for each contraction of the poly-

matroid. If the examined class of polymatroids is not closed under taking contrac-

tions, then this de�nition is hard to use. However, there is a simple connection

between the double circuits of the contractions and of the original polymatroid:

Claim 2.6.5. Let z ∈ S, f(z) > 0 and let x be a NTCDC of f/χz with principal

partition U1, U2, . . . , Ud′. If z /∈ supp(x), then either

(2.16i) x is a compatible double circuit of f with the same principal partition, or

(2.16ii) x + χz is a compatible double circuit of f with principal partition

{z}, U1, . . . , Ud′, or

(2.16iii) there exists 1 ≤ j ≤ d′ s.t. x+ χz is a compatible double circuit of f with

principal partition U1, . . . , Uj−1, Uj ∪ {z}, Uj+1, . . . , Ud′.
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2.6 The double circuit property

Proof. Clearly, rf (x+ χz) = (x+ χz)(S)− 2. If rf (x) = x(S)− 2, then we are at

(2.16i). Otherwise, rf (x) = x(S) − 1 and rf (x + χz − χw) = x(S) − 1 for every

w ∈ supp(x), hence, x+ χz is a compatible double circuit of f . For each circuit c

of f/χz either c or c+ χz is a circuit of f , so we are done.

If z ∈ supp(x), then the statement of Claim 2.6.5 is not true anymore, i.e.

there are NTCDCs of the contraction which do not correspond to NTCDCs of

the original polymatroid this way. For this, let S = {v1, v2, v3, v4}, f(U) = 2 if

|U | = 1, f(U) = 2|U | if v1 /∈ U , and f(U) = 2 + |U | if {v1} ( U . Then, f is a

2-polymatroid function, and x = (1, 2, 2, 2) is a NTCDC of f/χv1 . But f has no

NTCDCs, as v1 is contained in the support of any circuit with support of size at

least 2. In fact, x + χv1 is a non-compatible double circuit of f . Never mind, we

got an important corollary:

Corollary 2.6.6. Let M be a prematroid of the polymatroid function f . Then, M

has the DCP if and only if f has the DCP.

In their original work, Dress and Lovász de�ne the DCP in a slightly stronger

way. They say the DCP (and only for matroids) if

f

( ⋂
1≤i≤d

spf (xi)

)
≥ d− 2

holds for each NTCDC x of f . We call this modular double circuit property

(MDCP). It should be mentioned here that the auxiliary adjective �modular�

stands for indicating the modular structure of NTCDCs:

Claim 2.6.7. Let f be a polymatroid function. Then, f has the MDCP if and

only if (2.15) holds with equality for each NTCDC.

Proof. If f has the MDCP, then we must have equality everywhere in the proof of

Claim 2.6.3.

This intermediate property, the MDCP, helps to prove the DCP in some cases:

Claim 2.6.8. Let f : 2S → Z+ be a polymatroid function having the MDCP. If

z ∈ ZS
+ with z ≤ 1, then

(f/z)

( ⋂
1≤i≤d′

spf/z(x
′
i)

)
≥ d′ − 2
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for each NTCDC x′ of f/z with circuits x′1, x
′
2, . . . , x

′
d′ s.t. supp(x′) and supp(z)

are disjoint.

This is particularly useful if we restrict ourselves to matroids:

Corollary 2.6.9. The class of matroids having the MDCP is closed under taking

contractions. If the matroid M has the MDCP, then it has the DCP.

Proof of Claim 2.6.8. By induction, it is su�cient to prove the statement for z =

χs, f(s) > 0. Let therefore x be a NTCDC of f/z with supp(x) ⊆ S − supp(z)

with principal partition U1, U2, . . . , Ud and with circuits x1, x2, . . . , xd. Now we can

use Claim 2.6.5. In case (2.16i) we are done. Let us assume (2.16ii). As, xi + z is

a circuit of f for 1 ≤ i ≤ d, we have spf (xi) = spf (xi + z). Therefore,

f

(
d⋂
i=1

spf (xi)

)
≥ f

(
spf (x) ∩

d⋂
i=1

spf (xi + z)

)
≥ (d+ 1)− 2,

which gives

(f/z)

(
d⋂
i=1

spf/z(xi)

)
≥ d− 2.

Last, in case (2.16iii), let j = 1.

f

(
spf (x1) ∩

⋂
2≤i≤d

spf (xi + z)

)
≥ d− 2.

If we prove that s /∈ spf (x1) ∩
⋂

2≤i≤d spf (xi + z), then we are done by

(f/z)

( ⋂
1≤i≤d

spf/z(xi)

)
≥ (f/z)

(
spf (x1)

⋂
2≤i≤d

spf (xi)

)
= f

(
spf (x1)

⋂
2≤i≤d

spf (xi)

)
.

If s ∈ spf (x1), then x1(S)− 1 = rf (x1) = rf (x1 + z), and

x1(S)− 1 + xd(S) = rf (x1 + z) + rf (xd + z) ≥
rf ((x1 ∧ xd) + z) + rf (x+ z) = ((x1 ∧ xd) + z)(S) + (x+ z)(S)− 2

by submodularity, which is a contradiction.
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The converse of Corollary 2.6.9 might not be true, i.e. there can be DCP

matroids which are not MDCP. It would be nice to see an example.

The relation of MDCP and DCP of matroids, polymatroids and their prema-

troids is summarized as follows:

DCP ?=⇒
Y⇐= MDCP

}
polymatroids

m ⇑6⇓
 

forming a prematroid

DCP ?=⇒⇐= MDCP

}
matroids

In most of our cases, the polymatroid function b̂ is constructed from an inter-

secting submodular function b, as in (1.3xiii). In this case, the optimum of

min

(
b̂(Z) +

t∑
j=1

⌊
(̂b/Z)(Aj)

2

⌋)

is attained in a special form. It equals

min

(
b̂(Z) +

t∑
j=1

⌊
bZ(Uj)

2

⌋)
,

where the minimum is taken for every Z ⊆ S and for every family of sets

U1, U2, . . . , Ut ∈ LZ − {∅} s.t. A ⊆
⋃t
j=1 Uj. We may assume that for any i 6= j

with Ui ∩ Uj 6= ∅, there exists U ∈ FZ with U = Ui ∩ Uj. Moreover, if U ∈ FZ ,

then there exist Ui 6= Uj, U ( Ui, Uj s.t. Ui ∩ Uj = U .

2.7 Matroid properties implying the MDCP

Dress and Lovász [10] proved that full members of some natural matroid classes

have the MDCP even though they do not have modular lattice of �ats.

The matroids they considered are the following. Let L be a �eld extension

of the �eld K. The subsets of L which are algebraically independent over K are

called independent, and this independence de�nes the full algebraic matroid with

ground set L. The obtained matroid has the MDCP. Dress and Lovász have shown

also that the transversal matroid in which each hyperedge e is a member of the

ground set with in�nite multiplicity (in fact a large �nite multiplicity is su�cient
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for each hyperedge) (full transversal matroid), and also the graphic matroids of

�nite complete graphs (full graphic matroid) have the MDCP.

They introduced the following matroid properties implying the MDCP. Let M

be a matroid with ground set E. The set S is said to be in series in U if S is a

circuit of M/(U −S). The matroid M is said to have the series reduction property

if for all S ⊆ U ⊆ E s.t. S is in series in U , there is an element β ∈ E s.t. for

each U ⊆ S, S ∪ T is a circuit if and only if {β} ∪ T is a circuit. We say that M

has the weak series reduction property if the above holds for each S and U s.t. in

addition U − S is connected in M. It is clear that the series reduction property

implies the weak one. Dress and Lovász have shown that these properties imply

the MDCP, the full linear, and full algebraic matroids have the series reduction

property, while full graphic, and full transversal matroids have the weak one.

Björner and Lovász [3] went further, by observing that the so called pseudo-

intersections have important role, they introduced the class of pseudomodular ma-

troids. One of the several equivalent de�nitions of pseudomodularity is that for

any three �ats x, y, z of the matroid s.t. x covers x ∧ z and y covers y ∧ z, we
have r(x ∧ y) − r(x ∧ y ∧ z) ≤ 1, where covering and the lattice operations are

considered w.r.t. the lattice of �ats. Hochstättler and Kern [23] proved that pseu-

domodular matroids have the MDCP. We are not examining pseudomodularity

thoroughly, but we mention and will use some of their important properties [3].

First, uniform matroids and graphic matroids of complete graphs are pseudomod-

ular. Pseudomodularity is closed under taking direct sum (thus partition matroids

are pseudomodular). Pseudomodularity is closed under the operation of adding a

generic element from a �at (the operation is known as principal extension in lattice

theory).

For �lling the gap in the hierarchy of DCP matroid classes, Kromberg [28] and

Tan [54] proved that matroids having series reduction property are pseudomodu-

lar. While Kromberg's proof is short, Tan also proves that even the weak series

reduction property implies pseudomodularity.

2.8 Connection with polynomial matrices

The rank computation problem of polynomial matrices includes various fundamen-

tal problems in combinatorics. Let x1, x2, . . . , xk be indeterminates, and let A be a
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2.8 Connection with polynomial matrices

matrix whose entries are polynomials of these indeterminates over the reals. The

task is to compute the rank of A. As a polynomial number of elementary opera-

tions cannot be performed e�ciently with these polynomials, the naive approach

of computing the rank by Gaussian elimination does not work.

For simplicity, let A be a square matrix and consider the problem of determining

whether A is singular. Clearly, A is non-singular if there are reals x̃i s.t. the

matrix Ã obtained from A by substituting the x̃i values into the variables xi is

non-singular. If Ã is non-singular, then it is non-singular for almost all choices of

the x̃i's. This observation is of algorithmic interest. We can substitute random real

values into the indeterminates and we can conclude from the rank of the resulting

matrix. The conclusion whether the determinant of A is 0 is not always correct,

but the error probability is very small if we choose the random values from large

�nite ranges (see [53]).

For a detailed study of polynomial matrices see [36] and [38]. We just mention

that the intersection problem of linear matroids, determining f̂(S) for the linear

polymatroid f : 2S → Z+, computing the rank of generic rigidity matroids (in any

dimension), and even the linear matroid parity problem are special cases of the

rank computation problem.

We have mentioned parity problems of linear matroids where the matroid is rep-

resented with vectors of polynomials. The prototype example is the 2-dimensional

generic rigidity matroid of a graph G = (V,E). Let auv = χu − χv ∈ RV be

the incidence vector of the edge uv (according to a reference orientation), and

let xv, yv, v ∈ V be a set of indeterminates. By associating the 2|V |-dimensional

vector quv = ((yu − yv)auv, (xu − xv)auv) with the edge uv we get a representation

of the 2-dimensional generic rigidity matroid of G.

The 2-polymatroid parity problem can be obtained as follows [38]. Suppose

that the 2-polymatroid is represented by the pairs of vectors (as, bs) ∈ Rn × Rn,

s ∈ S. Let xs, s ∈ S be indeterminates again, and let A be the matrix with

ai,j =
∑

s∈S((as)i(bs)j − (as)j(bs)i). The maximum number of pairs M ⊆ S s.t.

the vectors {as, bs : s ∈M} are collectively independent is exactly the rank of A.

By putting together the two constructions, we can obtain a rank computation

problem of a polynomial matrix which is equivalent to a parity problem to the

2-dimensional generic rigidity matroid with some pairing of the elements. This

approach does not give a good characterization, and algorithm is obtained only if
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2. INTRODUCTION TO POLYMATROID MATCHING

randomization is allowed. In the following chapter we show a combinatorial char-

acterization for the parity problem of the 2-dimensional generic rigidity matroid.

We show in fact a good characterization for the parity problem of the wider class

of count matroids. However, most of the algorithmic questions are left open.
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Chapter 3

(k, l)-matroids

One of the most simple matroids de�ned by intersecting submodular functions

having the DCP is the full graphic matroid, i.e. the graphic matroid of a complete

graph. It can be seen easily that the only non-trivial double circuits of graphic

matroids are the graphs having 3 openly vertex-disjoint paths between 2 di�erent

vertices u and v; see Figure 3.1. The paths form the classes of the principal

u

v

Figure 3.1: A double circuit of degree 3 in M1,1

partition. There is a simple reasoning that these are the only non-trivial double

circuits of graphic matroids. If a non-trivial double circuit of a matroid has degree

d, then by contracting all but one element from each class of the principal partition,

we get a Ud,d−2 minor, and a Ud,2 by taking the dual. As the graphic matroid is

binary (and has no U4,2 minor), it cannot have a non-trivial double circuit of

degree bigger than 3. Then we can check that the only double circuits of degree 3
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3. (K,L)-MATROIDS

of graphic matroids are as in Figure 3.1.

In order to have the MDCP, an edge between u and v must be in the ground-

set. And this is su�cient: we can conclude that the full graphic matroid has the

MDCP [10]. It also has the DCP either by Corollary 2.6.9, or by the fact that the

class of (full) graphic matroids is closed under taking contractions (up to deleting

the loops).

This construction can be generalized in the following natural way. Let k ≥ 1,

l ≥ 0 be �xed integers and let H = (V,E) be a �nite hypergraph. Suppose that

each hyperedge is of size at least l
k
. Let Mk,l(H) be the matroid with ground-set E

s.t. F ⊆ E is independent if and only if |F ′| ≤ k|
⋃
F ′| − l for each ∅ 6= F ′ ⊆ F . It

can be checked easily that Mk,l(H) is indeed a matroid, we call it a (k, l)-matroid.

Of course, the rank-function rMk,l(H) can be de�ned as a Dilworth truncation

of an intersecting submodular function (see 1.3xi).

Let L = {∅} ∪ {{e} : e ∈ E} ∪ {E[X] : X ⊆ V },

(3.1) b(F ) =


min{k|X| − l : X ⊆ V, F = E[X]}, if |F | ≥ 2,

min{1,min{k|X| − l : X ⊆ V, F = E[X]}}, if |F | = 1,

0, if F = ∅.

Let moreover E[X1]∨E[X2] = E[X1∪X2] if E[X1]∩E[X2] 6= ∅, and F1∨F2 = F1∪F2

if one of F1 and F2 is a singleton contained by the other set. Therefore, b̂ is a

matroid rank function on E, namely rMk,l(H) = b̂. The matroids Mk,l(H) might be

called count matroid in the literature, we will call them (k, l)-matroids according

to the two parameters. Unlike in the case of the graphic matroid, it does not seem

to be obvious to characterize the non-trivial double circuits of Mk,l(H). (k, l)-

matroids other than the graphic ones are not necessarily binary, (in fact they have

various non-trivial double circuits of arbitrarily large degree).

We will see right now that (k, l)-matroids are linear. In this sense they model

well our e�ort that instead of following the linear approach we aim to discover

the combinatorial structure of (k, l)-matroids which helps us in the solution of

their parity problems. The matroid Mk,l(H) is linear by the following. Let L

be the direct sum of k-dimensional real linear spaces Lv (v ∈ V ). Let P be a

subspace of
∑

v∈V Lv of co-dimension l which is chosen in general position (w.r.t.

Lv, v ∈ V ). By being in general position w.r.t. Lv, v ∈ V we mean that all the

non-trivial algebraic dependencies are avoided i.e. the coordinates de�ning P are
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algebraically independent over the �eld of rationals extended by the coordinates of

Lv, v ∈ V . For e ∈ E, let le be a member of (
∑

v∈e Lv)∩P , s.t. le (e ∈ E) together
are in general position (w.r.t. Lv, v ∈ V and P ). By associating the linear element

le with e we get a representation of Mk,l(H). For more on the construction, see

Lovász [32] and Lovász and Yemini [40]. Here we encounter the situation mentioned

in Chapter 2, that we are not able to compute vectors being in general position

in an algorithmic way, nor a representation. A parity problem of a (k, l)-matroid

therefore can be solved by applying a linear algorithm to a representation using

random numbers, or the problem can be reduced to the rank computation of a

polynomial matrix as it is sketched in Section 2.8. Both approaches may err with

small probability.

For the purely combinatorial approach, �rst, let l = 0. For k = 1, let us consider

the graph of Figure 3.2. It is a double circuit of degree 3; the classes of the principal

partition are formed by the parallel edges. The singleton on v have to be in the

ground-set of the matroid, otherwise the DCP does not hold. If H contains only

u2

u3u1

v

Figure 3.2: A double circuit of degree 3 in M1,0

singletons, then Mk,0(H) is a partition matroid, it has the MDCP, moreover it is

pseudomodular. If each singleton of V is in E with multiplicity at least k, then

adding a hyperedge X 6= ∅ to H means that the matroid is extended with a generic

element from the �at generated by E[X]. As pseudomodularity is closed under

taking principal extensions [3], the resulting matroid is pseudomodular. Hence,

Mk,0(H) is pseudomodular for any hypergraph H which contains each element of

the ground set as a singleton with multiplicity at least k.

We have seen above that the full graphic matroids have the MDCP. If H

is a hypergraph and k = l = 1, then we speak about a hypergraphic matroid.
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3. (K,L)-MATROIDS

This matroid (and also its contractions) can have double circuits of arbitrarily

large degree. If H contains a hyperedge of size d − 1 with multiplicity d, then

M1,1(H) is a double circuit of degree d. The best what we can do is that we

do not deal with the problem of characterizing the non-trivial double circuits of

M1,1(H). We have to note also, that the class of hypergraphic matroids is not

closed under taking contractions anymore. (We do not think that a contraction-

closed closure of the hypergraphic matroids should be searched within the class of

(k, l)-matroids.) It is a bit more laborious, but it is proved in [3] that full graphic

matroids are pseudomodular. Adding a hyperedge X to H means again adding a

generic element in the �at generated by E[X]. As above, we conclude that M1,1(H)

is pseudomodular if
(
V
2

)
⊆ E.

There is a little chance that similar techniques help to prove the MDCP for

larger k's and l's. In what follows, we follow a completely di�erent way. Let

l = ck + d where c, d are integers with 0 ≤ d < k. We could think from the above

examples that if H contains the sets of size c + 1 with large multiplicity, then we

have the DCP. Even this is false. In some cases we need hyperedges of size c+ 2.

Figure 3.3 shows a double circuit of degree 6 of M3,5

((
V
2

))
in which the MDCP

does not hold without having the hyperedge of size 3 on vertices u1, u2, and u3.

By contracting the singleton classes u1u2, u1u3, u2u3, we get a double circuit of

degree 3 in M3,5

((
V
2

))
/{u1u2, u1u3, u2u3} which proves that the DCP does not

hold without the triple u1u2u3.

After considering several examples, we can get that the key in the MDCP

would be the ability of choosing a large independent set from any E[X] (with

k|X| − l ≥ 0). The maximum size is clearly k|X| − l. The truth is that this is

su�cient, the main statement of this chapter is the following:

Theorem 3.0.1. If

(3.2) rMk,l(H)(E[X]) = k|X| − l holds for each set X ⊆ V with k|X| − l ≥ 0,

then Mk,l(H) has the MDCP.

Theorem 3.0.1 is an easy consequence of the properties of a polymatroid con-

struction presented in Chapter 4. We will prove the MDCP in Chapter 4 in a more

general context. As the proof of the general case is essentially the same, the proof

of Theorem 3.0.1 is postponed for a while. Instead, we deal with the question of
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u3

u1

u2

Figure 3.3: A double circuit of degree 6 in M3,5

((
V
2

))

satisfying (3.2). If each set X ⊆ V of size bigger than l
k
is in E with multiplicity

k|X| − l, then (3.2) holds. A necessary and su�cient condition is stated in the

following theorem, which can be proved by simple computation.

Theorem 3.0.2 ([42]). Let l = ck + d where c, d are integers with 0 ≤ d < k.

Then, (3.2) holds if and only if E contains

(3.3i) all the subsets of V of size c+ 1 with multiplicity at least k − d, and

(3.3ii) all the subsets of V of size c+ 2 with multiplicity at least cd+ d− ck.

(Note that cd + d − ck can be negative.) In other words, (3.3i) and (3.3ii)

together imply that FE[X] is composed by one single set E[X] if |X| ≥ c+ 1.

Proof. For the necessity, if |X| = c+1, then k|X|−l = k−d, therefore X must be a

hyperedge ofH with multiplicity at least k−d. If |X| = c+2, then k|X|−l = 2k−d.
If E[X] has only hyperedges of size at most c+ 1, then E[X] ⊆

⋃
v∈X E[X −{v}],

and rMk,l
(E[X]) ≤

∑
v∈X k|X−{v}|− l = k|X|− l− (cd+d−ck). Therefore, each

set of size c+2 must be in H with multiplicity at least cd+d−ck if cd+d−ck > 0.
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3. (K,L)-MATROIDS

Now we prove the other direction by induction on |X|. If |X| ≤ c, then we

are done. If |X| = c + 1, then FE[X] is either composed by some sets E[X − {v}]
for v ∈ X and by some singletons {e} where |e| = c + 1, or FE[X] = {E[X]}. As

there are at least k− d = k(c+ 1)− l hyperedges in E of size c+ 1, we must have

FE[X] = {E[X]} and b(E[X]) = k|X| − l.

Next, let |X| = c+2. Again, FE[X] is either composed by some sets E[X−{v}]
for v ∈ X and by some singletons {e} where |e| = c+2, or FE[X] = {E[X]}. Simple

computation shows that k|X|−l ≤ |{e ∈ E[X] : |e| = c+ 2}|+
∑

v∈X k|X−{v}|−l,
thus the we �nally have FE[X] = {E[X]}.

Last, let |X| ≥ c + 3 and let v ∈ X. We know by induction, that FE[X−{v}] =

{E[X−{v}]} and FE[X′] = {E[X ′]} for any X ′ ⊆ X with v ∈ X ′ and |X ′| = c+2.

As FE[X−{v}] and FE[X′] both re�ne FE[X], and E[X − {v}] ∩ E[X ′] 6= ∅, we must

have FE[X] = {E[X]}.

Hence, if H satis�es (3.3i) and (3.3ii), then Mk,l(H) has the MDCP.

We do not know whether (k, l)-matroids with (3.2) are pseudomodular, unless

l = 0 or k = l = 1. However, we show that M2,3(
(
V
2

)
) does not have the weak

series reduction property even if it satis�es (3.2). Let V = {x, y, u, v, z}, E =
(
V
2

)
,

and let us consider the 2-dimensional rigidity matroid M2,3 on 5 vertices. Let

S = {xy, xu, xv} and U = S ∪
({y,u,v,z}

2

)
. Then, S is a circuit of M2,3/(U − S) and

spM2,3
(U−S) is connected. Setting T1 =

({y,u,v,z}
2

)
−{uv} and T2 =

({y,u,v,z}
2

)
−{uy},

we can see that S ∪ T1 and S ∪ T2 are circuits. The only βi ∈ E s.t. {βi} ∪ Ti is
a circuit are β1 = uv and β2 = uy. Thus, there is no β ∈ E which satis�es the

requirement of the weak series reduction property.

Let Mk,l(H) satisfy (3.3i) and (3.3ii). Let moreover A ⊆ 2E, and we ask for

ν(f |2A), where f(F ∪ B) = rM(F ∪
⋃
B) for F ⊆ E and B ⊆ A. Then, we

have (2.10) as in Theorem 2.6.2. In fact, this equation can be derived without

the DCP of Mk,l(H) if Mk,l(H) is the sum (in the matroidal sense) of smaller

(ki, li)-matroids and the DCP of the smaller (ki, li)-matroids is known. Say, let

k = l ≥ 2. The DCP of (hyper)graphic matroids is easier than the DCP of (k, k)-

matroids in general, but a (k, k)-matroid decomposes into the sum of hypergraphic

matroids. However, we have to note that if l1/k1 and l2/k2 di�er, then the sum of

the matroids Mki,li usually does not equal Mk1+k2,l1+l2 ([21]).

For computing ν(f |2A), we use a construction of Iwata, which computes the
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3.1 Berge-Tutte formula and transversal matroids

matching in a homomorphic map of a DCP matroid. As the matroid sum is

the homomorphic map of the direct sum, we restrict ourselves to the homomor-

phic map of matroids. We restrict ourselves moreover to the special case when

each member of A contains two elements of E. The general case can be derived

from the restricted one. Let M be a matroid with ground set E with a partition

E1, E2, . . . , Em, T = {t1, t2, . . . tm} and the members of Ei are mapped to ti. It

is not fully conform with our polymatroidal notation, but let ϕ(M) be the homo-

morphic map and let A ⊆ 2T . Let NT and NT ′ be free matroids with ground sets

T and T ′, where T ′ is a duplication of T . Let N be the direct sum of M, N′
T , and

NT , and A′ = {et′i : e ∈ Ei, ti ∈ T} ∪ {tit′i : i ∈ {1, 2 . . . ,m}} ∪ A. Then, it is not
hard to see that ν(rϕ(M)|2A) + |T | = ν(rN|2A′ ) (where the rank functions extend to

the set of pairs of elements as a 2-polymatroid function). If M has the DCP (then

so has the matroid obtained by adding free matroids), the last term has a good

characterization.

Let us consider now some applications, for more on the parity problem of (k, l)-

matroids, see [42].

3.1 Berge-Tutte formula and transversal matroids

As we have seen in Section 2.5, the matroid matching problem of (1, 0)-matroids

includes the matching problem of graphs. One of the usual interpretations of

transversal matroids is that we have a hypergraph H = (V,E) and F ⊆ E is

independent if and only if |F [X]| ≤ |X| holds for every X ⊆ V , i.e. we are talking

about M1,0(H).

We have to note however, that the transversal matroid matching problem can

be solved in an easier way. Tong, Lawler and Vazirani [55] showed that even the

weighted case of matchings of gammoids can be reduced to the weighted matching

problem of graphs. For more on gammoids, see [51].

3.2 Hypergraphic matroid

A more involved special case is the matching problem of graphic and hypergraphic

matroids. We have seen that pseudomodularity and also Theorem 3.0.2 implies

that M1,1(H) has the MDCP if
(
V
2

)
⊆ E. A well-known application of this is the

43



3. (K,L)-MATROIDS

maximum triangle cacti problem of 3-uniform hypergraphs [33], and the bit more

general graphic matroid matching theorem of Lovász:

Theorem 3.2.1 (Lovász, [33]). Let E =
(
V
2

)
, and A ⊆

(
E
2

)
. Then,

νM1,1(A) = min

(
|V | − |P|+

t∑
j=1

⌊
rN(Aj)

2

⌋)
,

where the minimum is taken for all partitions P = {P1, P2, . . . , Pq} of V and for

all partitions A1, A2, . . . , At of A and N is the cycle matroid of the graph obtained

from (V,
⋃
Aj) by contracting the members of P.

If
⋃
A contains also hyperedges of size bigger than two, then the min-max

relation cannot be rewritten in such a special form. In this case, the contraction

cannot be described by a partition of V . To see this, let e0, e1, . . . , em, m ≥ 3 be

pairwise vertex-disjoint hyperedges of size three and A = {{e0, ei} : 1 ≤ i ≤ m}.
Then the only possibility of obtaining equality in the min-max formula is Z = {e0}
and Aj = {{e0, ej}}, 1 ≤ j ≤ t = m.

3.3 2-dimensional generic rigidity

Let k = 2 and l = 3. If
⋃
A contains only edges, then this is the �smallest�

case when Theorem 3.0.2 gives a new result. Just as above, (3.2) is satis�ed if(
V
2

)
⊆ E. If E contains only edges, then it is known that the independent sets

of M2,3 of rank 2|V | − 3 are exactly the 2-dimensional minimally generically rigid

graphs with vertex-set V (see Laman, [29]). Let G = (V,E ′) be a 2-dimensional

generically rigid graph and let A be a set of (not necessarily disjoint) pairs from

E ′. Then, we could ask for the existence of a minimally generically rigid subgraph

of G composed only by edge-pairs of A. What a pity that 2|V | − 3 is always

odd. However, the maximum number of edge-pairs from A which are contained

in a minimally generically rigid subgraph of G can be computed, this is νM2,3(A),

which has a good characterization by Theorem 3.0.2. If G = (V,E ′) is not a

generically rigid graph but (V,E ′ ∪
⋃
A) is generically rigid, where A ⊆

((V
2)
2

)
,

then %M2,3/E′(A) is the minimum cardinality of a set B ⊆ A s.t. (V,E ′ ∪
⋃
B) is

generically rigid. This problem has a good characterization by Theorem 3.0.2 and

Theorem 2.1.2.
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3.4 A forest augmentation problem

3.4 A forest augmentation problem

The problems discussed here were proposed by Zsolt Fekete (personal communi-

cation). Let G = (V,E ′) be an undirected graph, let 1 ≤ k ≤ l ≤ 2k − 1. Let

moreover an other edge-set E ′′ on V and a set of packets A ⊆ 2E
′′
be given. We ask

for the minimum cardinality set B ⊆ A s.t. rMk,l
(V,E ′ ∪

⋃
B) = k|V | − l. Clearly,

if A is composed by singletons, then this is a minimum cardinality spanning subset

problem in a matroid.

Frank observed (personal communication) that if each packet is composed by p

parallel edges, p = k = l and k is part of the input, then the problem is NP-hard.

The graph on 2 vertices obtained from G after consecutively contracting |V | − 2

pairs of vertices contains k edge-disjoint spanning trees, if and only if G has a cut

of size at least k. Hence, the maximum cut problem is included.

If p = 2 and k ≥ 1, l ≥ 0 are arbitrary integers, then we just have to compute

%Mk,l/E′(A). This contains the problem of adding a minimum number of capac-

ity 2 edges (from a prescribed set) to G so that the resulting graph has k edge

disjoint spanning trees (k = l). Again, by Theorem 3.0.2 and Theorem 2.1.2, a

combinatorial characterization is achieved.

An alternative way of interpreting the special case k = l = 2 is that we are

given the graph G, a set of pairs of vertices P ⊆
(
V
2

)
, and we want to choose a

minimum set P ′ ⊆ P , s.t. the graph obtained from G by contracting the pairs of

P ′ has 2 edge-disjoint spanning trees. As G/{u, v} has 2 edge-disjoint spanning

trees if and only if G∪ {uv(1), uv(2)} has any, the equivalence is clear (where uv(1)

and uv(2) are parallel edges on u and v).

3.5 3-dimensional generic rigidity

The origin of examining the parity of (k, l)-matroids was suggested by Jackson

and Jordán [24], which was in fact one of the starting points of this thesis. As we

do not know a combinatorial characterization for the rank of the 3-dimensional

generic rigidity matroid, they gave a large subset of the independence sets of the

3-dimensional generic rigidity matroid by proving that if we are given a simple

graph and each vertex-set X with |X| ≥ 2 spans at most 5|X|−7
2

edges, then the

edge-set of the graph is independent. This is a rather large portion of graphs with
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3. (K,L)-MATROIDS

independent edge-sets, as in graphs with independent edge-sets each vertex-set X

with |X| ≥ 3 spans at most 3|X| − 6 edges. Again, the maximum number of such

set of edges in a given graph has a good characterization by Theorem 3.0.2.
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Chapter 4

Solid intersecting submodular

functions

Intersecting submodular functions de�ne polymatroids in a natural way, as in

(1.3xiii). This was the case for (k, l)-matroids, see [9; 11; 51] for more on the

topic. Now we introduce the new abstract class of solid intersecting submodular

functions and the polymatroids de�ned by them. These polymatroids will have

the MDCP and the DCP, and we will get all the (k, l)-matroids having property

(3.2) as a special case. The polymatroid arising in the 2-polymatroid parity formu-

lation of Mader's vertex-disjoint A-paths problem will be a special case, a proof of

Mader's theorem based on this is presented in Chapter 5. Some parity constrained

connectivity orientation problems are discussed in Chapter 6, most of the results

are based on the observation that the polymatroids de�ned by the out-degree

vectors of the good orientations can be embedded into solid polymatroids.

Let us start with an intersecting submodular function as in (1.3xiii):

(4.1i) Let S be a �nite ground-set, let ∅ ∈ L ⊆ 2S be a family which is closed

under taking intersections, and
⋃

L = S. Let b : L → Z+, b(∅) = 0 be

a function having the following intersecting submodular property. Let us

suppose that, if U1, U2 ∈ L with U1 ∩U2 6= ∅, then there exists a member

of L denoted by U1 ∨ U2 s.t. U1 ∪ U2 ⊆ U1 ∨ U2, and

b(U1) + b(U2) ≥ b(U1 ∩ U2) + b(U1 ∨ U2).
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4. SOLID INTERSECTING SUBMODULAR FUNCTIONS

Then, b̂ : 2S → Z+,

b̂(U) = min
F⊆L−{∅}, U⊆

S
F

∑
Ui∈F

b(Ui)

is a polymatroid function, and we de�ne FU for U ⊆ S as in (1.3xiii). Now, we

present the properties which together imply that the prematroids of b̂ have the

MDCP.

(4.1ii) Let us suppose that if U ∈ L− {∅}, then |FU | = 1.

(4.1iii) Let U1, U2, U3 ∈ L s.t. b(Ui,j) > 0 for every Ui,j ∈ L with Ui ∩ Uj ⊆ Ui,j,

1 ≤ i < j ≤ 3. Then, we suppose the existence of a member of L denoted

by t(U1, U2, U3) s.t. U1 ∪ U2 ∪ U3 ⊆ t(U1, U2, U3), and

(4.2)
∑

1≤i<j≤3

b(Ui ∩Uj) + b(t(U1, U2, U3)) ≤
3∑
i=1

b(Ui) + b(U1 ∩U2 ∩U3).

The quintuplet (S,L, b,∨,t) is said to be solid if it satis�es (4.1i-4.1iii). We use

the word solid also for the polymatroid function b̂ de�ned by a solid quintuplet.

Solid polymatroid functions behave well from the viewpoint of parity. The most

important properties of them are the following:

Theorem 4.0.1. The set of solid polymatroid functions is closed under taking

contractions.

Theorem 4.0.2. Any prematroid Mbb of a solid polymatroid function b̂ is solid

again.

Theorem 4.0.3. Solid polymatroid functions do have the MDCP.

Therefore, Theorem 4.0.1 and 4.0.3 together imply that solid polymatroids

have the DCP, and Theorem 4.0.2 and 4.0.3 proves the same for their prematroids.

Hence, if b̂ is solid and A ⊆ S, then

ν (̂b|2A) = min

(
b̂(Z) +

t∑
j=1

⌊
(̂b/Z)(Aj)

2

⌋)
,

where the minimum is taken for every Z ⊆ S and for every partition A1, A2, . . . , At

of A. It is also clear from the de�nition of b̂ that the Aj's can be decomposed into

members of LZ − {∅} and we get the following:
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Corollary 4.0.4. If b̂ is a solid polymatroid, A ⊆ S, then

ν (̂b|2A) = min

(
b̂(Z) +

t∑
j=1

⌊
bZ(Uj)

2

⌋)
,

where the minimum is taken for every Z ⊆ S and for every family of sets

U1, U2, . . . , Ut ∈ LZ − {∅} s.t. A ⊆
⋃t
j=1 Uj.

For better comprehension, let us recall the example of (k, l)-matroids having

property (3.2). Consider the de�nition of L, b, and ∨ as in (3.1). Then, (3.2)

means exactly (4.1ii). Moreover, if X1, X2, X3 ⊆ V are s.t. k|Xi ∩Xj| − l ≥ 0 for

every 1 ≤ i < j ≤ 3, then

∑
1≤i<j≤3

k|Xi ∩Xj| − l+ k|X1 ∪X2 ∪X3| − l =
3∑
i=1

k|Xi| − l+ k|X1 ∩X2 ∩X3| − l,

hence

∑
1≤i<j≤3

k|Xi∩Xj|−l+k|X1∪X2∪X3|−l ≤
3∑
i=1

k|Xi|−l+max{0, k|X1∩X2∩X3|−l}.

Let therefore t(E[X1], E[X2], E[X3]) = E[X1∪X2∪X3]. It is easy to see that the

de�nition of b and (4.1ii) implies (4.1iii), proving �nally Theorem 3.0.1.

It is worth to see (k, l)-matroids in a bit more di�erent, polymatroidal way.

Before, we have to observe that we can assign any value to singletons which are

not members L, and this operation preserves (4.1i) and (4.1iii):

Proposition 4.0.5. Let (S,L, b,∨,t) satisfy (4.1i), (4.1iii), and let s ∈ S. If

{s} /∈ L, then let L′ = L∪{s}, b′ : L′ → Z+, b
′|L = b. Then, after de�ning b′({s})

arbitrarily, there are operators ∨′ and t′ s.t. (S,L′, b′,∨′,t′) satis�es (4.1i) and

(4.1iii).

Coming back to (k, l)-matroids, let us simply assume that H = (V,E) is a

hypergraph (with hyperedges of size at least l
k
), and c and d are as in Theorem

3.0.2. Let L = {∅} ∪ {E[X] : X ⊆ V }, and we de�ne b : L → Z+ by b(∅) = 0,

and b(F ) = min{k|X| − l : X ⊆ V, F = E[X]} if F 6= ∅. It is not hard to see that

if E contains all subsets of V of size c + 1 and contains moreover all subsets of

size c + 2 if cd + d − ck > 0, then b(E[X]) = k|X| − l for |X| ≥ l
k
, (4.1i), (4.1ii),
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4. SOLID INTERSECTING SUBMODULAR FUNCTIONS

and (4.1iii) all hold, and �nally, b̂ is solid. The prematroids of b̂ are almost the

matroids what we called (k, l)-matroids earlier. However, in a prematroid of b̂ the

multiplicities of the sets of size c + 2 can be k(c + 2)− l while in a (k, l)-matroid

having the MDCP, cd+ d− ck (which is always smaller) is enough. Moreover, we

are free in prescribing the multiplicity of the set X of size bigger than c + 2 in

Mk,l, while in Mbb this multiplicity is at least k|X| − l. Hence, we have to modify

b by introducing upper bounds on singletons which are not of form E[X], we have

to maintain only b({e}) ≥ cd + d − ck if |e| = c + 2. After adding these upper

bounds, the prematroids of b̂ are exactly the (k, l)-matroids satisfying (3.3i) and

(3.3ii). Let us call the polymatroids de�ned this way (k, l)-polymatroids.

At some point of this chapter the reader might ask as well for the explanation

of the name �solid�. On one hand, this is just for referencing. By a more justi�able

explanation it refers to inequality (4.2) which can be interpreted that the function

b does not grow too quickly. Nevertheless, in practice, (4.2) is used only to prove

that the intersection of the spans of some circuits is large enough, which leads us

to the MDCP.

The principal observation in the background of considering inequality (4.2)

is that if H = (V,E) is a hypergraph, then the same inequality holds for the

supermodular function X 7→ |E[X]| with the opposite inequality sign. That is, if

X1, X2, X3 ⊆ V , then

∑
1≤i<j≤3

|E[Xi ∩Xj]|+ |E[X1 ∪X2 ∪X3]| ≥
3∑
i=1

|E[Xi]|+ |E[X1 ∩X2 ∩X3]|.

Based on this, we can introduce other solid polymatroids. Let S = V , α : V → Z+,

l ∈ Z+, let H = (V,E) be a hypergraph, and let b(X) = α(X) − |E[X]| − l if

∅ 6= X ⊆ V . (In fact, we can consider multihypergraphs, and we assume for sake

of simplicity, that |e| ≥ 1 for every e ∈ E.) We always assume moreover that α,

H, and l are chosen so that b ≥ 0. It is not hard to see that if l = 0, then b̂ is

the homomorphic map of a gammoid, moreover b̂ is solid. If l > 0, then (4.1ii)

is not necessarily satis�ed. Hence, we must modify the construction by setting

S = V ∪ {uv : u, v ∈ V, u 6= v}, L = {S[X] : X ⊆ V }, and

b(U) =

{
α(X)− |E[X]| − l, if U = S[X] for some ∅ 6= X ⊆ V ,

0, if U = ∅,

50



where S[X] = X ∪ {uv : u, v ∈ X, u 6= v} for X ⊆ V . Then, b̂ is solid for

every l ≥ 0. Though b̂ is isomorphic to a contraction of a (1, l)-polymatroid, it

was worth to de�ne b̂ directly and see what sort of principles do make b̂ a good

polymatroid. This construction will have an important role in Subsection 6.2.1

where we examine parity constrained rooted connected orientations.

If (S,L, b,∨,t) is solid and A ⊆ S, then we can ask for the maximum vector x

of P(̂b|2A) having c ≤ x ≤ d and x ≡ χT for some vectors c, d : A→ Z+ and T ⊆ A.

Clearly, we may assume c ≡ χT (otherwise c(a) is increased by 1 if c(a) 6≡ χT (a)).

The problem can be solved by appropriately modifying (S,L, b,∨,t). For each

a ∈ A we introduce a new member a′, and let U ′ = (U − A) ∪ {a, a′ : a ∈ U ∩ A}
for U ⊆ S. L′ = {{a′} : a ∈ A} ∪ {U ′ : U ∈ L}, b′({a′}) = d(a) if a ∈ A

and b′(U ′) = b(U) if U ∈ L. Let U ′
1 ∨′ U ′

2 = (U1 ∨ U2)
′ and t′(U ′

1, U
′
2, U

′
3) =

(t(U1, U2, U3)
′)′ if Ui ∈ L, while ∨′ and t′ is simply the union of the operands if

one of the operands is a singleton of A′. If c′ /∈ P(b̂′)|2A′ for the vector c′ : A′ → Z+

with c′(a′) = c(a), then the aimed x does not exist. Otherwise P(b̂′/c′) is solid,

and y is a maximum matching of (b̂′/c′)|2A′ if and only if x with x(a) = y(a′)+c(a)

is an answer for the original question.

Closing this chapter we proceed with the proof of Theorem 4.0.1, 4.0.2, and

4.0.3. The �rst two of these proofs has a technical nature. We are dealing with

double circuits only in 4.0.3.

Proof of Theorem 4.0.1. The only task is to show an operator tz s.t. (S,Lz, bz,∨z,tz)
is a solid quintuplet. This establishes the proof. Let U1, U2, U3 ∈ Lz with

b̂z(Ui ∩ Uj) > 0, 1 ≤ i < j ≤ 3. Then,

bz(Ui ∩ Uj) = b(Ui ∩ Uj)−
∑

X∈Fspbb(z)[Ui∩Uj ]

b(X)− z(Ui ∩ Uj − spbb(z))

for any 1 ≤ i < j ≤ 3. If U1 ∩ U2 ∩ U3 6= ∅, then

F(U1∩U2∩U3)∪spbb(z) = {U1 ∩ U2 ∩ U3} ∪ (Fspbb(z) − Fspbb(z)[U1 ∩ U2 ∩ U3]),

and

F(U1∩U2∩U3)∪spbb(z) = Fspbb(z),
if U1 ∩ U2 ∩ U3 = ∅. In both cases,

bz(U1∩U2∩U3) = b(U1∩U2∩U3)−
∑

X∈Fspbb(z)[U1∩U2∩U3]

b(X)−z(U1∩U2∩U3−spbb(z)).
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By applying (4.1iii) to b, and U1, U2, U3, we have∑
1≤i<j≤3

bz(Ui ∩ Uj) + b(t(U1, U2, U3))−∑
X∈Fspbb(z)[t(U1,U2,U3)]

b(X)− z(t(U1, U2, U3)− spbb(z)) ≤
3∑
i=1

bz(Ui) + bz(U1 ∩ U2 ∩ U3).

By Proposition 1.4.2, there exists a set U ′ ∈ Lz s.t. U ′ ⊇ t(U1, U2, U3), and

bz(U
′) ≤ b(t(U1, U2, U3))−

∑
X∈Fspbb(z)[t(U1,U2,U3)] b(X)− z(t(U1, U2, U3)− spbb(z)),

therefore let tz(U1, U2, U3) = U ′.

Proof of Theorem 4.0.2. We de�ne a solid quintuplet (E,L′, b′,∨′,t′) s.t. b̂′ = rMbb .
Let L′ = {∅} ∪ {{e} : e ∈ E} ∪ {

⋃
s∈U Es : U ∈ L}, and

b′(F ) =


b(U), if F =

⋃
s∈U Es, U ∈ L, |F | 6= 1

min(1, b(U)), if F =
⋃
s∈U Es, U ∈ L, |F | = 1

1, otherwise, if |F | = 1,

0, if F = ∅.

It is not hard to see that there are operators ∨′ and t′ with (4.1i) and (4.1iii).

Proof of Theorem 4.0.3. It is not hard to see that if c is a circuit of b̂ with rbb(c) > 0,

then supp(c) ⊆ sp(c) and |Fsp(c)−F∅| = 1. Let x be a NTCDC of b̂ with principal

partition U1, U2, . . . , Ud, and with circuits xi as de�ned in (2.12). For T ⊆ [d], let

C(T ) =
⋂
t∈T sp(xt) if T 6= ∅, and C(∅) = sp(x). Then, |FC(T ) − F∅| ≤ 1 and

C(T ) ⊆
⋃

FC(T ).

Lemma 4.0.6. If x is a NTCDC of b̂ with the above notations, T ⊆ [d], then

(4.3)
⋃

FC(T−i)∪C(T−j) = C(T − {i, j}),

where i, j ∈ T , i 6= j, and

(4.4) b̂(C(T )) =
∑

t∈[d]−T

x(Ut) + |T | − 2.
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Proof. The statement is proved by induction on |T |. For |T | ≤ 1, only (4.4) is to

be proved, which is clear. Let T = {i, j}. As x = xi ∨ xj, (4.3) follows. For (4.4),
let Ui be the unique member of FC(i)−F∅. As xi∧xj ∈ P(̂b), we have (xi∧xj)(S) ≤
b̂(C({i, j})) ≤ b(Ui∩Uj) ≤ b(Ui)+b(Uj)−b(Ui∨Uj) ≤ xi(S)−1+xj(S)−1+x(S)−2.

So let us assume |T | ≥ 3 and T = [|T |] for sake of simplicity. First, (4.3) is

proved. It can be seen immediately that

(4.5) C(T − i) ∪ C(T − j) ⊆ C(T − {i, j}).

Next we apply submodularity to C(T − i) ∪ C(T − j) and C(i). As⋃
FC(T−i)∪C(T−j)∪C(i) = C(∅),

and

(C(T − i) ∪ C(T − j)) ∩ C(i) ⊇ C(T − j),

we get

(4.6) b̂(C(T − i) ∪ C(T − j)) + b̂(C(i)) ≥
b̂(C(T − j)) + b̂(C(∅)) = b̂(C(T − {i, j})) + b̂(C(i)),

where the last equality is obtained by using the induction hypothesis, (4.4). As

C(T − {i, j}) is a �at, (4.5) and (4.6) together gives
⋃

FC(T−i)∪C(T−j) = C(T −
{i, j}), thus (4.3) is proved.

For (4.4),

b̂(C(T )) ≤
∑

t∈[d]−T

x(Ut) + |T | − 2

holds by Claim 2.6.3. For the reverse inequality, we apply (4.1iii) to {U1} =

FC(T−{2,3}) − F∅, {U2} = FC(T−{1,3}) − F∅, and {U3} = FC(T−{1,2}) − F∅. Then,

b̂(C(T )) = b(
⋂
i∈[3]

Ui) ≥
∑

{i,j}∈([3]
2 )

b(Ui ∩ Uj) + b(t(U1, U2, U3))−
∑
i∈[3]

b(Ui).

As {U1 ∩ U2} = FC(T−{3}) − F∅, we have b(U1 ∩ U2) = b̂(U1 ∩ U2), and similarly,

b(U1∩U3) = b̂(U1∩U3) and b(U2∩U3) = b̂(U2∩U3). As
⋃

Ft(U1,U2,U3) ⊇ C(T− [3]),

we have b(t(U1, U2, U3)) ≥ b̂(C(T − [3])). Again, we know all the quantities on

the right hand side, which together yield

b̂(C(T )) ≥
∑

i∈[d]−T

x(Ui) + |T | − 2.
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Chapter 5

Mader's A-paths

In this chapter we show how to prove Mader's vertex-disjoint A-path theorem

(Mader, [41]) with the help of polymatroid matching of a solid polymatroid. First,

let G = (V,E) be an undirected graph and let A = {T1, T2, . . . , Tk} be a set

of pairwise disjoint subsets of V , the members of A are called terminal sets. A

path of G is said to be an A-path if its end-vertices belong to di�erent parts

of A, and these are the only vertices on the path which belong to
⋃

A. Mader

gave a combinatorial min-max relation for the maximum number of vertex-disjoint

A-paths. This number is denoted by µ(G,A).

As a surprising application of his theory, Lovász [33] has shown that Mader's

problem can be formulated as polymatroid matching. For this, he de�ned the 2-

polymatroid function p̂ with p̂(F ) = minU1,U2,...,Ut⊆V, F⊆
St

i=1 E[Ui]
p(Ui) for F ⊆ E,

where p : 2V → Z+,

p(X) =
2|X| − 2, if ∅ 6= X ⊆ V −

⋃
A,

|X| − 1 + |X −
⋃

A|, if X ⊆ V meets exactly one of T1, T2, . . . , Tk,

|X|+ |X −
⋃

A|, if X ⊆ V meets at least two of T1, T2, . . . , Tk.

For sake of simplicity, let us assume that G is connected and we have at least two

non-empty terminal sets. Simple computation shows that µ(G,A) = ν(p̂)− |V |+
|
⋃

A| (Lovász [33]). Lovász characterized the even NTCDCs of the 2-polymatroid

p̂ and gave a proof of Mader's min-max relation by following an inductive approach.

That proof reduces the problem into smaller ones with the help of Theorem 2.3.1.
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Later, Schrijver [52] gave an explicit linear representation of p̂, therefore, this

approach gives a polynomial algorithm to compute µ(G,A).

We will show that p̂ can be embedded into a small solid polymatroid. Con-

trary to the linear approach, the advantage of this one is the ability of deriv-

ing Mader's combinatorial characterization to µ(G,A from the characterization of

ν(p̂). Moreover, if there would be a polymatroid parity algorithm for DCP or solid

polymatroids, then that could be applied to this embedding. The resulting algo-

rithm would have a combinatorial manner, without dealing with linear elements

but with simple combinatorial objects. It is a sore spot that are not aware of such

an algorithm.

Let us consider now the key question of embedding p̂ into a solid polymatroid.

For each 0 ≤ h ≤ k, let us put a singleton to v, denoted by vh. Let S0 = {v0 :

v ∈ V } ∪ {uv : u, v ∈ V, u 6= v}, Si = S0 ∪ {vi : v ∈ V } for i ∈ [k], and

S = S∞ = S0 ∪ {vi : v ∈ V, i ∈ [k]}. Hence, |S| =
(|V |

2

)
+ (k + 1)|V |. For X ⊆ V

and h ∈ {0, 1, 2, . . . , k,∞}, we use the notation Sh[X] = {e ⊆ X : e ∈ Sh}. Let

L = {S0[X], Si[X], S∞[X] : X ⊆ V, i ∈ [k]}, and let b : L → Z+ be de�ned by

b(F ) =


2|X| − 2, if F = S0[X] for some ∅ 6= X ⊆ V ,

2|X| − 1, if F = Si[X] for some ∅ 6= X ⊆ V and i ∈ [k],

2|X|, if F = S∞[X] for some X ⊆ V .

Simple computation shows that b̂ is a solid polymatroid. Moreover, for Z =⋃
i∈[k]{vi : v ∈ Ti}, we have (̂b/Z)|2E = p̂. Hence, the remaining task is to derive

Mader's theorem from the characterization of ν((̂b/Z)|2E).

Theorem 5.0.7 (Mader [41]). The maximum number of vertex-disjoint A-paths

of the graph G = (V,E) is

min

(
|R|+

∑
C∈C

⌊
|C ∩

⋃
i∈[k]Xi|
2

⌋)
,

where R,X1, . . . , Xk are pairwise disjoint subsets of V , Ti ⊆ R∪Xi for each i ∈ [k]

and C denotes the family of vertex-sets of the components of G−R−
⋃k
i=1E[Xi].

Proof. We derive the non-trivial max ≥ min part. By Corollary 4.0.4, we have

(5.1) ν((̂b/Z)|2E) = min

(
(̂b/Z)(W ) +

t∑
j=1

⌊
bW (Fj)

2

⌋)
,
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where the minimum is taken for all W ⊆ S with Z ⊆ W and for every family

F1, F2, . . . , Ft ∈ LW − {∅} with E ⊆
⋃t
j=1 Fj.

Let FF =
⋃
h∈{0,1,...,k,∞} Fh,F , where the members of Fh,F are of form Sh[X]

resp. For technical reason, let Xh,F = {∅ 6= X ⊆ V : Sh[X] ∈ Fh,F}. It can be

observed that X =
⋃
h∈{0,1,2,...,k,∞} Xh,F is formed by pairwise disjoint sets, and

|X∞,F | ≤ 1. Let us choose W so that |{X ∈ Xh,W : |X| ≥ 2, 0 ≤ h ≤ k}| is as
small as possible.

We give new indexing of the Fj's, as Fh,l, h ∈ {0, 1, 2, . . . , k,∞}, l ∈ [ti], where

Fh,l = Sh[Xh,l]. Let us choose the Fh,l's so that
∑k

h=0 th+t∞ is as small as possible.

Claim 5.0.8. For each F ∈ FW not of form Si[{v}], v ∈ Ti, i ∈ [k], there exist

Fh′,l′ 6= Fh′′,l′′ s.t. F ( Fh′,l′ and F ( Fh′′,l′′.

Proof. If there is no Fh′,l′ with F ⊆ Fh′,l′ , then we could replace FW by removing

F , adding Si[{v}] for v ∈ Ti, vi ∈ F , and S0[{v}] for v /∈
⋃
Ti, v0 ∈ F , and by

increasing t by setting Ft+1 = F . If there is only one such set, then we simply

replace FW by removing F , adding Si[{v}] for v ∈ Ti, vi ∈ F , and S0[{v}] for
v /∈

⋃
Ti, v0 ∈ F . In both cases, this would contradict the choice of W .

Claim 5.0.9. t0 = 0.

Proof. As G is connected, (V,X = {Xh,l : h ∈ {0, 1, 2, . . . , k,∞}, l ∈ [th]}) is a

connected hypergraph. If X0 ∈ X0, then by
⋃

A 6= ∅ there exist X ∈ X−X0 with

X ∩ X0 6= ∅. But then, we could remove X0 from X, and replace X by X ∪ X0.

This contradicts the minimality of
∑k

h=0 th + t∞.

Proposition 5.0.10. If Fh′,l′∩Fh′′,l′′ 6= ∅, then Fh′,l′∩Fh′′,l′′ ∈ FW . Thus, we have

the following possibilities.

(5.2i) If Fh′,l′ ∩ Fh′′,l′′ ∈ F0,W , then h′, h′′ ∈ [k], and h′ 6= h′′.

(5.2ii) If Fh′,l′ ∩ Fh′′,l′′ ∈ Fi,W , i ∈ [k], then h′ = h′′ = i or {h′, h′′} = {i,∞}.

(5.2iii) If Fh′,l′ ∩ Fh′′,l′′ ∈ F∞,W , then h′ = h′′ = ∞.

As we have two non-empty terminal sets, and G is connected, then X∞,W 6= ∅.
Let R be its unique member.
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5. MADER'S A-PATHS

Claim 5.0.11. |X| = 1 for every X ∈ Xh,W , 0 ≤ h ≤ k. Moreover, we can choose

the dual solution so that bW (Fi,l) ≤ 1 for every i ∈ [k], l ∈ [ti].

Proof. If the statement does not hold, then we replace W by W ′ de�ned by

R′ = R ∪
⋃
{Xi,l ∩Xi′,l′ : i, i ∈ [k], i 6= i′},

Xi,W ′ =

{v} : v ∈
ti⋃
l=1

Xi,l −
⋃

i′∈[k]−i

Xi′,l′

 ,

X0,W ′ =

{v} : v ∈ V −R′ −
⋃ ⋃

i∈[k]

Xi,W ′

 .

Then, for i ∈ [k] and l ∈ [ti], we have

bW (Fi,l) = 2|Xi,l| − 1−
∑

X∈X0,W [Xi,l]

(2|X| − 2)−
∑

X∈Xi,W [Xi,l]

(2|X| − 1),

and

⌊
bW (Fi,l)

2

⌋
=

|Xi,l −
⋃

X0,W [Xi,l]−
⋃

Xi,W [Xi,l]|+ |X0,W [Xi,l]|+
⌊
−1 + |Xi,W [Xi,l]|

2

⌋
≥

|Xi,l −
⋃

X0,W [Xi,l]−
⋃

Xi,W [Xi,l]|+ |X0,W [Xi,l]|.

For the last inequality we use Xi,W [Xi,l] 6= ∅. By Claim 5.0.8 and Proposition

5.0.10, every member of
⋃k
i=1

⋃ti
l=1 X0,W [Xi,l] is contained by at least two di�erent

Xi′,l′ 's, which means
∑k

i=1

∑ti
l=1 |X0,W [Xi,l]| ≥ 2

∣∣∣⋃k
i=1

⋃ti
l=1 X0,W [Xi,l]

∣∣∣. For l ∈
[t∞], we have

bW (F∞,l) = 2|X∞,l −R| −
k∑
i=1

∑
X∈Xi,W [X∞,l]

(2|X| − 1),
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and⌊
bW (F∞,l)

2

⌋
≥

k∑
i=1

∑
X∈Xi,W [X∞,l]

(1− |X|) +


2|X∞,l −R| −

∑k
i=1

∑
X∈Xi,W [X∞,l]

|X|

2

 =

k∑
i=1

∑
X∈Xi,W [X∞,l]

(1− |X|) +

⌊
bW ′(F∞,l)

2

⌋
.

As ∑
X∈X0,W

(2|X| − 2) + 2|R|+ 2
∣∣∣⋃k

i=1

⋃ti

l=1
X0,W [Xi,l]

∣∣∣ = 2|R′|,

and∑
X∈Xi,W

(2|X| − 1) +
∑

X∈Xi,W [X∞,l]

(1− |X|)+

∣∣∣⋃ti

l=1

(
Xi,l −

⋃
X0,W [Xi,l]−

⋃
Xi,W [Xi,l]

)∣∣∣ =
∣∣∣⋃Xi,W ′

∣∣∣ ,
we have

b̂(W ) +
k∑
i=1

ti∑
l=1

⌊
bW (Fi,l)

2

⌋
+

t∞∑
l=1

⌊
bW (F∞,l)

2

⌋
≥

k∑
i=1

∣∣∣⋃Xi,W ′

∣∣∣+ 2 |R′|+
t∞∑
l=1

⌊
bW ′(F∞,l)

2

⌋
= b̂(W ′) +

t∞∑
l=1

⌊
bW ′(F∞,l)

2

⌋
.

If E ⊆
⋃t∞
l=1 FF∞,l∪W ′ , then we get a valid dual solution. Each uv ∈ E which is not

covered by these sets, were covered originally by some of the FFi,l
's, i ∈ [k]. In this

case, let us cover uv by the F , where {F} = F{uv}∪W ′ − FW ′ . By the construction

of W ′, either u, v ∈
⋃

Xi,W ′ , or u ∈
⋃

Xi,W ′ and v ∈ R′, or u, v ∈ R′. This implies

bW ′(F ) ≤ 1 and
⌊
bW ′ (F )

2

⌋
= 0. Hence we have a valid dual solution.

For i ∈ [k], letXi =
⋃

Xi,W . By Proposition 5.0.10, if l 6= l′, thenX∞,l∩X∞,l′ =

R. To establish the proof, we have to compute

µ(G,A) = −|V |+
∣∣∣⋃A

∣∣∣+ b̂Z(W ) +
t∞∑
l=1

⌊
bW (F∞,l)

2

⌋
.
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First,

− |V |+
∣∣∣⋃A

∣∣∣+ b̂Z(W ) =

−|V |+
k∑
i=1

|Ti|+
k∑
i=1

|Xi−Xi∩Ti|+2|R|−
k∑
i=1

|R∩Ti| = |R|−
∣∣∣V −R−

⋃k

i=1
Xi

∣∣∣ .
Next,

t∞∑
l=1

⌊
bW (F∞,l)

2

⌋
=

t∞∑
l=1

⌊
2|X∞,l −R| −

∑k
i=1 |X∞,l ∩Xi|

2

⌋
=

t∞∑
l=1

(
|X∞,l −R−

k⋃
i=1

Xi|+

⌊∑k
i=1 |X∞,l ∩Xi|

2

⌋)
.

Clearly, X∞,l − R are pairwise disjoint and they together cover E[V − R] −⋃k
i=1E[Xi]. Setting Cl = X∞,l −R, the corresponding minimum is at least

min

(
|R|+

t∞∑
l=1

⌊
|Cl ∩

⋃k
i=1Xi|

2

⌋)
.

If some Cl spans a non-connected graph in E[V − R] −
⋃k
i=1E[Xi], then we can

divide it into components which does not increase the minimum.
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Chapter 6

Parity constrained connectivity

orientations

Connectivity orientations of (hyper)graphs and matchings of graphs have a natural

common generalization, the �eld of parity constrained connectivity orientations.

This means that an orientation of the given hypergraph H = (V,E) is to be ob-

tained which meets some connectivity requirements and moreover has a prescribed

parity of out-degree for each vertex. In what follows a hyperedge can contain a

vertex multiple times, so a hyperedge e ∈ E is identi�ed with the multiplicity

function e : V → Z+, i.e. e contains v with multiplicity e(v). By E[X] we mean

the set of hyperedges e having supp(e) ⊆ X.

Let us assume, that |e| ≥ 1 for every e ∈ E. By an orientation ~H of H we

mean that for each hyperedge e ∈ E a vertex v ∈ e is chosen which is called the

head of e (and is denoted by head(e)) and the vertices of the hyperedge e−head(e)

are the tails (and this is denoted by tail(e)). A hyperedge e enters X if X contains

the head of e (i.e.
∑

v∈X head(e)(v) > 0) and does not contain all of its tails (i.e.

supp(tail(e)) 6⊆ X). Similarly, e leaves X if it enters V −X. The set of hyperedges

entering and leaving X is denoted resp. by δin~H (X) and δout~H (X).

The connectivity requirement is prescribed by the function p : 2V → Z+. We

always assume that p(∅) = p(V ) = 0 and remember that p is non-negative. An

orientation ~H of H is said to cover p if δin~H (X) ≥ p(X) for every X ⊆ V . We say

that the function p : 2V → Z+ is intersecting supermodular if

(6.1) p(X) + p(Y ) ≥ p(X ∩ Y ) + p(X ∪ Y )
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6. PARITY CONSTRAINED CONNECTIVITY ORIENTATIONS

holds for every X, Y ⊆ V with X ∩ Y 6= ∅, and co-intersecting supermodular if

(6.1) holds whenever X, Y ⊆ V with X∪Y 6= V . Similarly, p : 2V → Z+ is crossing

supermodular if (6.1) holds for every X, Y ⊆ V with X ∩ Y 6= ∅ and X ∪ Y 6= V .

Let g : 2V → Z, g(X) =
∑

e∈E e(X) − |E[X]| − p(X). It is clear, that if

x : V → Z is the out-degree vector of an orientation covering p, then

x ≥ 0,(6.2)

x(X) ≤ g(X), for every ∅ 6= X ⊆ V ,(6.3)

x(V ) = g(V ).(6.4)

Moreover, the opposite direction is also true due to the following simple observation

(see e.g. Frank, Király, and Király [14]).

Lemma 6.0.12. Let H = (V,E) be a hypergraph, p : 2V → Z+ a function s.t.

p(∅) = p(V ) = 0, and x : V → Z+. Then, H has an orientation covering p s.t. the

out-degree of each vertex v ∈ V is x(v), if and only if (6.3) and (6.4) hold.

Orientation problems with crossing supermodular connectivity requirements

have a wide literature. If p is crossing supermodular, and g ≥ 0, then the con-

straints (6.2-6.4) determine a base polyhedron. Hence, for an orientation covering

p, we need an integer vector from this base polyhedron. For an orientation covering

p, with even out-degrees, we need an even vector with the same properties. There

are also some solvable connectivity orientation problems with requirements that

are not crossing supermodular, but in those cases we lose the important structural

property that the out-degree vectors of the good orientations form base polyhedra.

That is why we restrict ourselves in this way. The following can be proved using

basic properties of polymatroids:

Theorem 6.0.13. Let H = (V,E) be a hypergraph and let p : 2V → Z+, p(∅) =

p(V ) = 0. If p is intersecting supermodular, then H has an orientation covering

p, if and only if

(6.5) g(V ) ≤
t∑

j=1

g(Xj)

holds for every partition X1, X2, . . . , Xt of V . If p is co-intersecting supermodular,

then H has an orientation covering p, if and only if

(6.6) (t− 1)g(V ) ≤
t∑

j=1

g(V −Xj)
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holds for every partition X1, X2, . . . , Xt of V .

The characterization for the more general orientation problem when the connec-

tivity requirement is described by a non-negative crossing supermodular function

is given by Frank, Király, and Király [14]:

Theorem 6.0.14. Let H = (V,E) be a hypergraph and let p : 2V → Z+ be a

crossing supermodular function with p(∅) = p(V ) = 0. Then, H has an orientation

covering p, if and only if (6.5) and (6.6) holds for every partition X1, X2, . . . , Xt

of V .

Now we turn to the parity constrained case. Hence, let T ⊆ V , and we are

looking for connectivity orientations having odd out-degrees exactly in the vertices

of T . There are natural parity involving strengthening of the inequalities (6.5) and

(6.6) which surprisingly give characterizations in some cases, however there is no

general recipe. It is clear that if x is the out-degree vector of a parity constrained

orientation and X ⊆ V , then x(X) ≤ g(X) if g(X) ≡ |T ∩ X|, but the stronger

inequality x(X) ≤ g(X) − 1 holds if g(X) 6≡ |T ∩ X|. Hence, if there is a parity

constrained orientation, then

(6.7) g(V ) ≤
t∑

j=1

g(Xj)− |{j : g(Xj) 6≡ |T ∩Xj|}|,

and

(6.8) (t− 1)g(V ) ≤
t∑

j=1

g(V −Xj)− |{j : g(V −Xj) 6≡ |T −Xj|}|

holds for every partition X1, X2, . . . , Xt of V . Notice that any of (6.7) or (6.8)

imply that g(V ) ≡ |T | (by applying to the partition (∅, V )). There are cases when

we do not know the su�ciency of these formulas, there are characterized cases

where they do not seem to be su�cient, and last, there are open cases where they

are not su�cient.

We have to note that if H is a graph, then by setting p′(X) = p(V −X) and

T ′ = {v : χT (v) 6≡ δ(v)}, H has an orientation which is good for p and T if and

only if H has an orientation which is good for p′ and T ′ and vice versa. Namely,

given an orientation for one of these problems, the reversed oriented graph is good

63



6. PARITY CONSTRAINED CONNECTIVITY ORIENTATIONS

for the other one. Hence the co-intersecting supermodular problem is equivalent

to the intersecting supermodular case as they go to each other by this simple

construction. In the hypergraph case this correspondence does not work due to

the asymmetry of having one head and multiple tails in the hyperedges.

We will distinguish the cases when p is intersecting, co-intersecting, or cross-

ing supermodular, as the di�culty of the latter problems is rather di�erent. We

also examine the di�culties occurring when we add lower and upper out-degree

bounds to tractable connectivity requirements. E.g. if p is intersecting supermod-

ular, then we can add upper bounds to the out-degrees and keeping p intersecting

supermodular. When we add lower bounds, then p becomes crossing supermodu-

lar, however this operation causes smaller di�culties as compared to considering

general crossing supermodular requirements.

6.1 Requirement on singletons and their comple-

ments

Let us start with the easiest cases when p can be positive only on singletons

and their complements. In other words, the connectivity requirement prescribes

only lower and upper bounds on the out-degrees. The parity constrained problem

with this kind of connectivity requirement was considered by Frank, Seb®, and

Tardos [15] for graphs. They have shown that the problem reduces to the matching

problem of graphs, and gave a characterization which is similar to Tutte's theorem

in the sense that we have to count the components having �bad parity� after

deleting some set. It is not hard to see that the same method works for the

hypergraph case. Let 0 ≤ c(v) ≤ d(v) ≤
∑

e∈E e(v) − |E[v]| be the lower and

upper bound for the out-degree of v respectively.

A possible characterization for the hypergraph case in a polymatroidal language

is essentially the following. Let g0 be de�ned similarly to g with p = 0. Then, ĝ0

is solid. We have mentioned in Chapter 4 that the problem when we are looking

for a vector x ∈ P(ĝ0) with c ≤ x ≤ d and x ≡ c can be reduced to the parity

problem of a solid polymatroid. This leads to a characterization. The obtained

characterization can be reformulated in our dearly-loved form. First, the case

having only upper bounds in the out-degrees:
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Theorem 6.1.1. Let H = (V,E) be a hypergraph, let p : 2V → Z+, suppose that

p is 0 except on singletons, and �nally let T ⊆ V . Then, H has an orientation

covering p with odd out-degrees exactly in the vertices of T , if and only if (6.7)

holds for every partition X1, X2, . . . , Xt of V .

We will see in Section 6.2 that the partition formula (6.7) gives a charac-

terization even in the more general case when p is a non-negative intersecting

supermodular function.

In the case when we have only lower bounds on the out-degrees i.e. p(X) = 0 if

X is not the complement of a singleton, the easier copartition formula (6.8) would

be a candidate. However we do not know whether it is su�cient. For graphs it is

su�cient, as the problem is equivalent to the case with only upper bounds:

Theorem 6.1.2. Let H = (V,E) be a graph, let p : 2V → Z+ s.t. p can be

positive only on complements of singletons, and �nally let T ⊆ V . Then, H has

an orientation covering p with odd out-degrees exactly in the vertices of T , if and

only if (6.8) holds for every partition X1, X2, . . . , Xt of V .

In the case when there are lower and upper bounds on the out-degrees we do

not think that there is a really nice human-comprehensible formula containing only

partitions, copartitions, and similar animals. It is noted in [15] however, that even

in the graph case (6.7) and (6.8) are not su�cient. For this, let V = {v1, v2, v3, v4},
E = {v1v2, v2v3, v3v4, v4v1}, the lower bounds are (0, 0, 2, 0), the upper bounds are

(0, 2, 2, 2), and all the out-degrees must be even. Then, there exists a parity

constrained orientation with only the lower bounds, and there is another one with

the upper bounds. Hence, (6.7) and (6.8) holds. But there is no parity constrained

orientation with the lower and upper bounds.

6.2 Intersecting supermodular orientations

Nebeský [44] studied the parity constrained orientation problem in which the ori-

entation must have a spanning arborescence rooted at a prescribed vertex. In his

viewpoint, the problem arose in the di�erent context of maximum genus embedding

of graphs.

Frank, Jordán, and Szigeti [13] generalized this as follows. Given a function

m : V → Z+, an orientation with prescribed parity of out-degrees of a graph is
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to be reached for which there exist m(V ) edge-disjoint spanning arborescences s.t.

exactly m(v) of the arborescences are rooted at v. Then, p(X) = m(V − X) if

X 6= ∅.
One of the most general result in the area is due to Király and Szabó. They gave

a characterization for the case when p is a non-negative intersecting supermodular

function. Surprisingly, the parity involving modi�cation (6.7) of the partition

formula is su�cient in this case. If there is any characterization in a parity problem

it is a rather uncommon occasion that the answer is a simple partition type formula.

Theorem 6.2.1 (Király and Szabó [27]). Let H = (V,E) be a hypergraph, let

p : 2V → Z+ be an intersecting supermodular function with p(∅) = p(V ) = 0,

and �nally T ⊆ V . Then, H has an orientation covering p with odd out-degrees

exactly in the vertices of T , if and only if the partition formula (6.7) holds for

every partition X1, X2, . . . , Xt of V .

Theorem 6.2.1 is unlikely to �t into the framework of solid polymatroids. In

the previous sections we have seen various examples for NTCDCs in various poly-

matroids, we can see more in [33] in the polymatroid parity formulation of Mader's

A-paths problem. For the polymatroids arising in the orientation problem of The-

orem 6.2.1 we do not show any. The pure explanation is that there are no NTCDCs

but the contractions do have. This observation will lead to an elegant new proof

of Theorem 6.2.1 in the Chapter 7. But at this point, our theory is not strong

enough enough to prove the general case, however we can give a proof to Frank,

Jordán, and Szigeti's Theorem.

6.2.1 Rooted connected orientations

Now, let us specialize our setup to the case when p : 2V → Z+,

p(X) =

{
m(V −X), if ∅ 6= X ⊆ V ,

0, otherwise.

We deal with the technically bit more general problem which was introduced in

Chapter 4. We repeat the construction. Let S = V ∪ {uv : u, v ∈ V, u 6= v},
S[X] = X ∪ {uv : u, v ∈ X, u 6= v} and X ⊆ V , and L = {S[X] : X ⊆ V }. Let
H = (V,E) be a hypergraph (|e| ≥ 1 for every e ∈ E), α : V → Z+, l ∈ Z+, and
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�nally,

b(U) =

{
α(X)− |E[X]| − l, if U = S[X] for some ∅ 6= X ⊆ V ,

0, if U = ∅.

We always assume that α, H, and l are chosen so that b ≥ 0. Then, b̂ is solid,

as it has been stated in Chapter 4. Then, Corollary 4.0.4 characterizes ν (̂b|2A) for

any A ⊆ S.

We show moreover that if α ≥
∑

e∈E e i.e.H is �relatively small� as compared to

α, then ν (̂b|2V ) can be characterized by the partition formula (2.3). The condition

α ≥
∑

e∈E e will hold for the orientation problem, and we have to compute exactly

ν (̂b|2V ) there.

Theorem 6.2.2. Let b be as above and suppose moreover α ≥
∑

e∈E e. Then,

ν (̂b|2V ) = min
s∑
j=1

⌊
b(S[Xj])

2

⌋
,

where the minimum is taken over all partitions X1, X2, . . . , Xs of V .

Proof. We have to prove only the ≥ direction. For two disjoint sets X, Y ⊆ V , let

E[X, Y ] = E[X ∪ Y ] − E[X] − E[Y ]. By Corollary 4.0.4, there exist Z ⊆ S and

U1, U2, . . . , Ut ∈ LZ − {∅} s.t. V ⊆
⋃t
j=1 Uj, and

(6.9) ν (̂b|2V ) = b̂(Z) +
t∑

j=1

⌊
bZ(Uj)

2

⌋
.

Let us choose the dual solution so that b̂(Z) is as small as possible, and let t be

as small as possible with respect to the primary conditions.

Lemma 6.2.3. Then, b̂(Z) = 0.

Proof. For U ⊆ S, let XU = {X ⊆ V : S[X] ∈ FU}, and let Xj ⊆ V s.t.

Uj = S[Xj]. Let Z1 ∈ XZ with b(S[Z1]) > 0, and let 1, 2, . . . , t′ be those indices j

having Z1 ⊆ Xj. Then, we have t′ ≥ 2, and Xj ∩Xj′ = Z1 for j, j′ ∈ [t′], j 6= j′.

Let Z ′ = Z − S[Z1], and U ′
j = S[Xj − Z1] for j ∈ [t′]. Let 1, 2, . . . , t′′ be those

indices j for which l − |E[Xj − Z1, Z1]| is even. Next, let t′′ ≤ t′′′ ≤ t′, the exact

value of t′′′ will be �xed later. In what follows, we show that if we replace Z by
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Z − S[Z1], replace Uj by U ′
j for each j ∈ [t′′′], remove Uj for every t′′′ + 1 ≤ j ≤ t′,

and introduce a new class S[Z1] ∪
⋃t′

j=t′′′+1 Uj, then the right hand side of (6.9)

does not increase, which contradicts the minimality of b̂(Z). The whole thing is a

bit messy but simple technical computation. First, by de�nition, we have

bZ(Uj) = bZ′(U
′
j) + l − |E[Xj − Z1, Z1]|.

Next, by using the parity of l − |E[Xj − Z1, Z1]|, we get
t′′′∑
j=1

⌊
bZ(Uj)

2

⌋
≥

t′′′∑
j=1

(⌊
bZ′(U

′
j)

2

⌋
+
l − |E[Xj − Z1, Z1]|

2

)
− t′′′ − t′′

2
,

and

t′∑
j=t′′′+1

⌊
bZ(Uj)

2

⌋
≥

t′∑
j=t′′′+1

bZ(Uj)− 1

2
≥

bZ′(S[Z1] ∪
⋃t′

j=t′′′+1 Uj)− bZ′(S[Z1])− (t′ − t′′′)

2

by submodularity. By α ≥
∑

e∈E e, we have b(S[Z1]) ≥
∑t′

j=1 |E[Xj − Z1, Z1]| − l.

If l = 0, then by b(S[Z1]) ≥
∑t′′′

j=1 |E[Xj − Z1, Z1]|+ (t′ − t′′′), we get

b(S[Z1])+
t′∑
j=1

⌊
bZ(Uj)

2

⌋
≥

t′′′∑
j=1

⌊
bZ′(U

′
j)

2

⌋
+
bZ′(S[Z1] ∪

⋃t′

j=t′′′+1 Uj)− t′′′ + t′′

2
,

thus t′′′ = t′′ is a good choice.

If l > 0, then b(S[Z1]) ≥
∑t′′′

j=1 |E[Xj − Z1, Z1]| − l, and

b(S[Z1]) +
t′∑
j=1

⌊
bZ(Uj)

2

⌋
≥

t′′′∑
j=1

⌊
bZ′(U

′
j)

2

⌋
+
bZ′(S[Z1] ∪

⋃t′

j=t′′′+1 Uj)− l + t′′′l + t′′ − t′

2
.

By choosing t′′′ = t′ we get −l + t′′′l + t′′ − t′ = (t′ − 1)(l − 1)− 1 + t′′ ≥ −1, and

hence

b(S[Z1]) +
t′∑
j=1

⌊
bZ(Uj)

2

⌋
≥

t′′′∑
j=1

⌊
bZ′(U

′
j)

2

⌋
+

⌊
bZ′(S[Z1] ∪

⋃t′

j=t′′′+1 Uj)

2

⌋
− 1

2
.

As the other terms are integer, the −1
2
can be dropped.
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6.2 Intersecting supermodular orientations

The partition type characterization of Frank, Jordán, and Szigeti [13] can be

derived from Theorem 6.2.2 by simple computation:

Theorem 6.2.4 (Frank, Jordán, and Szigeti [13]). Let H = (V,E) be a hypergraph,

m : V → Z+, p : 2V → Z+, p(X) = m(V − X) for X 6= ∅, p(∅) = 0, and �nally

T ⊆ V . Then, H has an orientation covering p with odd out-degrees exactly in the

vertices of T , if and only if the partition formula (6.7) holds for every partition

X1, X2, . . . , Xt of V .

Proof. It is not hard to see that we can restrict ourselves to the case T = ∅. Then
(6.7) transforms to

(6.10) g(V ) ≤ 2
t∑

j=1

⌊
g(Xj)

2

⌋
.

Let α = m +
∑

e∈E e and l = m(V ). We prove that (6.10) implies 2ν(ĝ) = g(V ),

and therefore the existence of an orientation covering p having moreover even out-

degrees. If ∅ 6= X ⊆ V , then
∑

e∈E e(X) ≥ |E| − |E[V −X]|. Then, by applying

(6.10) to the partition {X,V −X} we get∑
e∈E

e(X)− |E[X]| ≥ |E| − |E[V −X]| − |E[X]| ≥ m(X) +m(V −X),

which gives g ≥ 0.

By Theorem 6.2.2, there exists a partition X1, X2, . . . , Xs with

ν(ĝ) =
s∑
j=1

⌊
g(Xj)

2

⌋
,

and the statement follows.

The problem can be put in a bit more general setting, namely we can also

prescribe lower bounds on the out-degrees. By a note of Chapter 4, this case

reduces to the matching problem of a solid polymatroid.
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6. PARITY CONSTRAINED CONNECTIVITY ORIENTATIONS

6.3 Crossing supermodular orientations

We have already seen some orientation problems with crossing supermodular con-

nectivity requirement. The problem is of this kind when we have lower and upper

bounds on the out-degrees, another one is the rooted problem with lower bounds

on the out-degrees. Now we switch to a crossing supermodular case when p de-

scribes a non-trivial connectivity requirement. However, very little is known about

these cases, we usually do not now combinatorial characterizations to the parity

constrained case. The only case for which we have some partial result is the case

of strongly connected requirement.

6.3.1 Strongly connected orientation of planar graphs

In one of the most simple orientation problems with crossing supermodular connec-

tivity we have p(X) = 1 if ∅ 6= X ( V , i.e. we are looking for a strongly connected

orientation (strong orientation for short). We consider only the graph case, we

assume for sake of simplicity that the considered graph G = (V,E) is connected, it

has no loop, and T = ∅ i.e. we prescribe even out-degree for each vertex. A strong

orientation having even out-degrees is referred as even strong orientation. It is

well-known that G has a strong orientation if and only if G is 2-edge-connected.

As we are interested in the existence of a more restricted con�guration, let us

assume that G is 2-edge-connected.

The out-degree vectors of the strong orientations of G are exactly the integer

solutions of the system

P = {x ∈ RV
+ : x(V ) = |E|, x(X) ≤ |e(X)| − 1 for every ∅ 6= X ( V } =

{x ∈ RV
+ : x(V ) = |E|, x(X) ≤ |e(X)| − c(G[V −X]) for every ∅ 6= X ⊆ V },

where for a graph G′, c(G′) denotes the number of its components, and (only in

this section) e(X) denotes the set of edges having at least one end-vertex in X.

It can be seen easily that P is a base polyhedron. Therefore, G admits an even

strong orientation if and only if P contains an even vector. Moreover,

|e(X)| − c(G[V −X]) = |e(X)| − c((V,E[V −X])) + 1 + |X| − 1 =

rM∗(e(X)) + |X| − 1,
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6.3 Crossing supermodular orientations

where M is the cycle matroid of G and M∗ is its dual. Then, h : 2V → Z,

h(X) =

{
rM∗(e(X)) + |X| − 1, if ∅ 6= X ⊆ V ,

0, if X = ∅

is a non-negative non-decreasing intersecting submodular function, and ĥ : 2V →
Z+, ĥ(X) = minX⊆X1∪̇X2∪̇...∪̇Xt

∑t
i=1 h(Xi) is a polymatroid function. By this

terminology, P = P(ĥ) ∩ {x ∈ RV
+ : x(V ) = |E|}, and G has an even strong

orientation if and only if

(6.11) 2ν(ĥ) = |E|.

The goal would be to give a combinatorial characterization to the existence of

an even strong orientation, i.e. a characterization to (6.11) in terms of G. We were

not able to solve this task in general. First we describe a linear representation

of ĥ, but we have to note that we are not aware of an algorithm which gives a

representation in a deterministic way. Finally, for the case of planar graphs, we

embed P(ĥ) into a small solid polymatroid.

Linear representation

First of all, recall that the dual of the graphic matroid is linear, let us represent it in

Rk for some k, by associating the vector y(e) ∈ Rk with e ∈ E. The representation
of ĥ will be in the space Rk×RV . Let z(v) be the unit vector of RV associated with

v. For each vertex v ∈ V , we consider the subspace lv of Rk × RV generated by

the vectors {(y(e), 0) : e ∈ δ(v)} and (0, z(v)). Let H be a hyperplane of Rk ×RV

in general position (w.r.t. the above constructed subspaces lv, v ∈ V ). For more

on this construction, see Lovász [32]. Then, simple computation shows that the

subspaces {lv ∩H : v ∈ V } together represent ĥ.
As in the case of (k, l)-matroids, this construction does not give a deterministic

polynomial algorithm to construct a representation. Therefore the problem of the

existence of an even strong orientation is random polynomial, we do not know

whether it is in NP∩co-NP, however it is quite likely.
In the remaining part of the chapter, we show a combinatorial NP∩co-NP

characterization for planar graphs.
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Planar graphs

The key fact used here is that the dual graphic matroid of a planar graph is also a

graphic matroid. Let us �x a planar embedding of G, let V ∗ be its set of faces and

let G∗ be the dual graph. Consequently, let e∗ be the edge of G∗ corresponding

to e ∈ E. Hence, F ⊆ E is independent in M∗ if and only if {e∗ : e ∈ F} is

independent in the cycle matroid of G∗. Let us repeat the above construction of

the linear representation in a more combinatorial setting.

Let S =
(
V ∪V ∗

3

)
, i.e. the set of triplets of V ∪ V ∗. For X ⊆ V , let Γ∗(X) =

{v∗ ∈ V ∗ : v∗u∗ = e∗ for some e ∈ e(X)}, i.e. the set of faces incident to X. Let

L = {S[X ∪X∗] : X ⊆ V,X∗ ⊆ V ∗,Γ∗(X) ⊆ X∗}. Let b : L → Z+ s.t.

b(S[X ∪X∗]) =

{
|X ∪X∗| − 2, if |X ∪X∗| ≥ 2,

0, otherwise.

For v ∈ V , let Sv = S[{v} ∪ Γ∗({v})] = {xyv ∈ S : e ∈ δG(v), e∗ = xy}. Clearly,
b(Sv) = |{v} ∪ Γ∗(v)| − 2 = |Γ∗(v)| − 1 = rM∗(e(v)) for any v ∈ V .

Claim 6.3.1. Let ∅ 6= X ⊆ V . Then,

min
X=X1∪̇X2∪̇...∪̇Xt, Xi 6=∅

t∑
i=1

b(S[Xi ∪ Γ∗(Xi)]) = ĥ(X).

Proof. For the easier direction, let X ⊆ V and X∗ ⊆ V ∗ s.t. |X ∪ X∗| ≥ 2 and

Γ∗(X) ⊆ X∗. Then, b(S[X ∪ X∗]) = |X ∪ X∗| − 2 = |X∗| − 1 + |X| − 1 ≥
r∗M(e(X)) + |X| − 1 = h(X) ≥ ĥ(X).

For the other part, let ∅ 6= X ⊆ V . Then, h(X) = rM∗(e(X)) + |X| − 1 =∑t
i=1(|X∗

i | − 1) + |X| − 1 for a subpartition X∗
1 , X

∗
2 , . . . , X

∗
t of V ∗ s.t. {e∗ : e ∈

e(X)} ⊆
⋃t
i=1E

∗[X∗
i ]. For each v ∈ X, there exists a unique i s.t. {e∗ : e ∈ e(v)} ⊆

E∗[X∗
i ]. Let Xi = {v ∈ X : {e∗ : e ∈ e(v)} ⊆ E∗[X∗

i ]}. Then,
∑t

i=1(|X∗
i | − 1) +

|X| − 1 ≥
∑t

i=1(|X∗
i | − 1 + |Xi| − 1) =

∑t
i=1 b(S[X∗

i ∪Xi]).

Hence, ĥ is a homomorphic map of the matroid rank function b̂. Next, we have

to observe that b̂ is solid. The main result of this section is the following:

Theorem 6.3.2. Let G = (V,E) be a 2-edge-connected loopless planar graph.

Then, G has an even strong orientation if and only if

(6.12) 2b̂(Z) +
t∑

j=1

2

⌊
bZ(Uj)

2

⌋
≥ |E|
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6.3 Crossing supermodular orientations

for every Z ⊆ S and for every family of sets U1, U2, . . . , Ut ∈ LZ − {∅} s.t. for

each v ∈ V , there exists an Uj with
⋃
v∈V Sv ⊆ Uj.

Let us consider an example. Let G be the cube, i.e. V = {0, 1}3 and E =

{uv : |u∆v| = 1}, where ∆ stands for the symmetric di�erence. Then, b̂(S[V ∗]) =

b(S[V ∗]) = 6 − 2 = 4. For any v ∈ V we have bS[V ∗](Sv) = b(S[{v} ∪ V ∗]) −
b̂(S[V ∗]) = (7− 2)− 4 = 1. Thus,

ν(ĥ) ≤ b̂(S[V ∗]) +
∑
v∈V

⌊
bS[V ∗](Sv)

2

⌋
= 4 +

∑
v∈V

⌊
1

2

⌋
= 4.

As |E| = 12, this means that there is no even strong orientation. In fact, we have

equality here, an orientation having 4 vertices of out-degree 2 and 4 vertices of

out-degree 1 can be constructed easily. Figure 6.1 shows a NTCDC of ĥ. If we

2 2

22

2
2

0

0

Figure 6.1: A NTCDC of ĥ in the cube

decrease any two of the positive values by one, and substitute the 0's by 1's, then

there will be a strong orientation with these out-degrees. The 0's are at distance 3

from each other (in the graph), hence the two 2's to decrease are both at distance

1 from a 0, or at distance 1 from two di�erent 0's. Hence, we have 3 di�erent cases

which are shown in Figure 6.2. And the intersection of the spans of the circuits

has rank 0. If we do the extension described above, then the intersection will be

S[V ∗] which has rank 4.

It might not be impossible to give a simpler embedding into a matroid having

the DCP, but might be a hard task. It is more important to formalize Theorem

6.3.2 in a human comprehensible form. If this is not possible, then we cannot

expect nice combinatorial description for the non-planar case.
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Figure 6.2: Orientations
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Chapter 7

Polymatroids without NTCDCs

We have shown in Section 6.2 that Theorem 6.2.4 reduces to the DCP of solid

polymatroids. The abstract de�nition of the connectivity requirement in Theorem

6.2.1 makes the same thing unlikely for the more general setting of Theorem 6.2.1.

However, we think that there must be a more general reasoning in the background

of Theorem 6.2.1, a more general one than its original inductive proof, in other

words there must be a way to place this statement in polymatroid parity theory.

The answer for this question was given by Szabó and the author in [43]. First

of all we observed that the polymatroids formed by the out-degree vectors of

the orientations meeting these connectivity requirements have no NTCDCs at all,

however the contraction used in the inductive step of Theorem 2.6.1 destroys this

property. Finally, we have shown how to get rid of the contraction, and proved

that a partition type characterization holds.

This chapter is dedicated to the polymatroids having no NTCDCs. Most of

these results are from [43] which is a joint work with Jácint Szabó. As a starting

point we recall an immediate consequence of (the proof of) Theorem 2.3.1:

Theorem 7.0.3 (Lovász [33]). Let f : 2S → Z+ be a polymatroid function. Sup-

pose that for every s ∈ S there exists a maximum matching m s.t. s /∈ spf (m). If

f has no even NTCDCs, then

(7.1) ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of S.
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7. POLYMATROIDS WITHOUT NTCDCS

If the polymatroid has no NTCDCs, then the condition that every s ∈ S is

avoided by the span of a maximum matching can be dropped. Let us emphasize

that this is a surprisingly rare phenomenon. We know only a few examples in

which a partition type formula characterizes the size of the maximum matching.

Theorem 7.0.4. ([43]) Let f : 2S → Z+ be a polymatroid function without

NTCDCs. Then,

ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of S.

Corollary 7.0.5. ([43]) Let f : 2S → Z+ be a polymatroid function without

NTCDCs, and let T ⊆ S. Then, we have

δT (f) = f(S)−min

(
t∑

j=1

f(Uj)− |{j : f(Uj) 6≡ |T ∩ Uj|}|

)
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of S.

Our aim in the present chapter is to explore how some polymatroid operations

alter the double circuits, or keep the property that a certain type of double cir-

cuit does not exists. Thereafter, we will show examples for polymatroids without

NTCDCs.

We have seen in Claim 2.6.5 that under some circumstances the NTCDCs of a

contraction correspond to NTCDCs of the original matroid. The counterexample

presented after the statement shows that the contraction can destroy the property

of having no NTCDCs. Hence, contractions must be avoided in the proof of The-

orem 7.0.4, while the application of other operations may have fruitful properties.

(7.2i) Translation.

Claim 7.0.6. If n ∈ ZS and f , f + n are polymatroid functions, then a

vector w is a double circuit of f with U = supp(w) if and only if w+ n|U
is a double circuit of f+n. In this case their principal partitions coincide.

Proof. Clearly, rf+n(x + n) − (x + n)(S) = rf (x) − x(S) for all x ∈ ZS.

Thus by symmetry, it is enough to prove that if w is a double circuit

76



of f with support W then ws + ns > 0 for every s ∈ U . Otherwise, if

ws + ns ≤ 0, then we would have

w(U − s) ≥ w(U) + ns = f(U) + 2 + ns ≥ f(U − s) + 2,

which is impossible.

(7.2ii) Deletion or upper bound.

Claim 7.0.7. Let u ∈ ZS
+. If w ∈ ZS

+ is a double circuit of f ′ := f\u
then w is either a double circuit of f with the same principal partition, or

w is trivial or non-compatible w.r.t. f ′.

Proof. If w ≤ u then w is a double circuit of f with the same principal

partition. Observe that ws ≤ f ′({s})+2 and f ′({s}) ≤ us for every s ∈ S.
Thus if w 6≤ u then there exists an s ∈ S such that ws− f ′({s}) ∈ {1, 2}.
If ws = f ′({s}) + 2 then rf ′(wsχs) = ws − 2, thus w is non-compatible.

If ws = f ′({s}) + 1 then wsχs is a circuit of f ′ thus w is either non-

compatible, or if w is compatible then it is trivial.

(7.2iii) Direct sum. The double circuits of f1⊕f2 are exactly the double circuits

of f1 and f2.

(7.2iv) Dual. Let S = {1, 2, 3}, and let f be the rank function of the uniform

matroid U3,2 on S, i.e. f(X) = min{2, |X|}. Then, f ∗1(X) = 1 for each

non-empty set X, i.e. f ∗1 is the rank function of U3,1. It can be seen that

f has no compatible double circuit, while (1, 1, 1) is a compatible double

circuit of f ∗1 . However, not everything is lost, since

δT (f ∗) = min{|{s ∈ S : xs 6≡ χT (s)}| : x ∈ B(f ∗u)} =

min{|{s ∈ S : us − ys 6≡ χT (s)}| : y ∈ B(f)} = δ{s∈S:χT (s) 6≡us}(f).

Hence, dualization is fruitful if δ{s∈S:χT (s) 6≡us}(f) is tractable by some rea-

son. It may also happen that we can reach a NTCDC-free polymatroid by

dualization, this is the case for a possible polymatroid parity formulation

of the ordinary matching problem of graphs.
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7. POLYMATROIDS WITHOUT NTCDCS

(7.2v) Truncation. This operation can create new NTCDCs. Let |S| = 3 and

f = | · |. Now all double circuits of f are of the form 3χs, while f 1 admits

a NTCDC (1, 1, 1) with d = 3.

(7.2vi) Dilworth Truncation. The Dilworth truncation can create new com-

patible non-trivial double circuits. Let S = {1, 2, 3}, and f(X) = |X|+2,

if X is not empty. If x is a NTCDC of f , then its principal partition

partitions S into singletons, x({1, 2}) = x({1, 3}) = x({2, 3}) = 4, i.e.

x(S) = 6 which contradicts to x(S) = 7. Hence, f has no NTCDCs, while

the Dilworth-truncation of f has the compatible double circuit (2, 2, 2).

We do not know how homomorphic image and sum alter double circuits. The

most simple question would be, whether f1 + f2 has NTCDCs if f1 and f2 do not

have any. Now, we are ready to prove Theorem 7.0.4.

Proof of Theorem 7.0.4. The �rst part of the statement is proved by induction on

|K(f)|, where

K(f) = {s ∈ S : s ∈ spf (m) for each maximum matching m}.

Case 1. If K(f) = ∅, then we are done by Theorem 7.0.3.

Case 2. Next, let K(f) 6= ∅. If m is a maximum matching of f + 2χs, then

m(s) ≥ 2. Indeed, let m(s) = 0. As m is a maximum matching, there exists a

set s ∈ U ⊆ S with m(U) ≥ (f + 2χs)(U) − 1. This means m(U − s) = m(U) ≥
(f + 2χs)(U)− 1 ≥ f(U − s) + 1, which is a contradiction.

It is also clear that m+2χs is a matching of f +2χs for each matching m of f .

Therefore, m is a maximum matching of f if and only if m + 2χs is a maximum

matching of f + 2χs.

Let s ∈ K(f). Then, ν(f) ≤ ν(f + χs) ≤ ν(f + 2χs) = ν(f) + 1. We claim

that ν(f + χs) = ν(f). Indeed, if m is a maximum matching of f + χs and

ν(f + χs) = ν(f) + 1, then m is also a maximum matching of f + 2χs, proving

m(s) ≥ 2. Then, m − 2χs is a maximum matching of f , and there exists a set

s ∈ U ⊆ S with (m − 2χs)(U) = f(U). This implies m(U) = f(U) + 2 which

contradicts that m is a matching of f + χs.

Moreover, this gives K(f + χs) ( K(f). By Lemma 7.0.6, f + χs has no

NTCDC, and we can apply induction to f+χs. This gives a partition U1, U2, . . . , Ut
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of S s.t.

ν(f + χs) =
t∑

j=1

⌊
(f + χs)(Uj)

2

⌋
.

But then,

ν(f) = ν(f + χs) =
t∑

j=1

⌊
(f + χs)(Uj)

2

⌋
≥

t∑
j=1

⌊
f(Uj)

2

⌋
.

Proof of Corollary 7.0.5. As δT (f) = δ∅(f + χT ), and the translation does not

create new NTCDCs, we can apply Theorem 7.0.4 to f + χT .

δT (f) = δ∅(f + χT ) = (f + χT )(S)− 2ν(f + χT ) =

f(S) + |T | − 2 min
U=U1∪̇U1∪̇...∪̇Ut

t∑
j=1

⌊
(f + χT )(Uj)

2

⌋
,

which is exactly what we have stated.

We know only one nontrivial class of polymatroids without NTCDCs. It is

a great fortune that these polymatroids appear as degree vectors of connectivity

orientation problems. Of course, this is not an accident, the �rst goal of examining

NTCDC-free polymatroids was the better comprehension of the orientations with

intersecting supermodular requirement. In fact,

Lemma 7.0.8. Let p : 2V → Z+ be an intersecting supermodular function s.t.

p(∅) = 0, and

(7.3)

(
d− 1

2

)
p(U) <

∑
1≤i<j≤d

p(U − Ui − Uj) + 2

(
d− 1

2

)
,

whenever U ⊆ V and U1, U2, . . . , Ud, d ≥ 3 is a partition of U into non-empty

sets. Let α : V → Z+, H = (V,E) be a hypergraph, and suppose that the function

f : 2V → Z de�ned by f(U) = α(U) − |E[U ]| − p(U) is non-negative and non-

decreasing. Then, f̂ has no NTCDC.

Hence, for (7.3), p can be constant on non-empty sets, or modular, or of form

p(U) = |E ′[V − U ]| (U 6= ∅) for some hypergraph (V,E ′), or any 0 − 1 valued
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7. POLYMATROIDS WITHOUT NTCDCS

non-negative intersecting supermodular function, or any non-negative intersecting

supermodular function which is non-increasing on non-empty sets.

The example presented after Claim 2.6.5 is of this type, by the choice V =

{v1, v2, v3, v4}, E = {v1vi, vivi : i ∈ {2, 3, 4}}, p({v1}) = 1 and p(U) = 0 for the

other sets, and α =
∑

e∈E e.

Observe moreover that these f 's are generalizations of the polymatroid func-

tions considered in Theorem 6.2.2.

Proof. For contradiction, let x : V → Z+ be a NTCDC of f̂ with principal partition

U = U1∪̇U2∪̇ . . . ∪̇Ud. Then,

x(U) ≤ f(U) + 2.

Let 1 ≤ i < j ≤ d. As x|U−Ui
and x|U−Uj

are circuits, we have

x(U − Ui) = f(U − Ui) + 1, and x(U − Uj) = f(U − Uj) + 1.

As x|U−Ui−Uj
is independent,

ci,j + x(U − Ui − Uj) = f(U − Ui − Uj)

for a non-negative integer ci,j. By applying submodularity to U − Ui and U − Uj,

we get

ci,j = f(U)− f(U − Ui)− f(U − Uj) + f(U − Ui − Uj) ≤ 0,

Therefore, U − Ui and U − Uj is a modular pair of sets, i.e., they satisfy the sub-

modular inequality with equality, and ci,j = 0. This means, that each hyperedge

e ∈ E[U ] is spanned by one of the Ui's. Therefore, by the modularity of these

pairs, we have

(7.4)(
d− 1

2

)
(f(U)+2) =

(
d− 1

2

)
x(U) =

∑
1≤i<j≤d

x(U−Ui−Uj) =
∑

1≤i<j≤d

f(U−Ui−Uj).

On the other hand, (
d− 1

2

)
α(U) =

∑
1≤i<j≤d

α(U − Ui − Uj),
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as α is modular. Last,(
d− 1

2

)
|E[U ]| =

(
d− 1

2

) d∑
i=1

|E[Ui]| =
∑

1≤i<j≤d

|E[U − Ui − Uj]|.

Using the de�nition of f , we get that the last 2 inequalities and (7.3) together

contradict (7.4).

7.1 Intersecting supermodular orientations again

Finally, we are ready to prove Theorem 6.2.1, based on polymatroids with no

NTCDCs:

Proof of Theorem 6.2.1. If X1, X2, . . . , Xt is a partition of V , then the necessity

of condition (6.7) is clear. Hence, we have to prove that if (6.7) holds for every

partition of V , then H has an orientation covering p with odd out-degrees exactly

in the vertices of T .

Let α : V → Z+ s.t. α(v) =
∑

e∈E e(v). Then g(U) = α(U)− |E[U ]| − p(U).

Claim 7.1.1. g is non-negative and non-decreasing.

Proof. If ∅ 6= U ( V , then by (6.7) we have g(U)+g(V −U) ≥ g(V ), and therefore

g(U) ≥ α(V )− |E| − α(V − U) + |E[V − U ]|+ p(V − U) ≥
α(U)− |E|+ |E[V − U ]| = α(U)− |{e ∈ E : e ∩ U 6= ∅}| ≥ 0,

and g(V ) = α(V )− |E| ≥ 0 holds trivially. If v ∈ U ⊆ V , |U | ≥ 2, then

g(U)− g(U − v) = α(v)− |E[U ]|+ |E[U − v]| − p(U) + p(U − v) ≥
α(v)− |{e ∈ E[U ] : v ∈ e}| ≥ 0.

Therefore, α, H, p, and g are as in Lemma 7.0.8, and we can apply Theorem

7.0.4 to ĝ. This gives that there exists a partition U1, U2, . . . , Ut of V s.t.

δT (ĝ) = ĝ(V )−

(
t∑

j=1

ĝ(Uj)− |{j : ĝ(Uj) 6≡ |T ∩ Uj|}|

)
.

81



7. POLYMATROIDS WITHOUT NTCDCS

By the de�nition of ĝ, we get that there exists a partition U ′
1, U

′
2, . . . , U

′
t′ of V s.t.

δT (ĝ) ≤ ĝ(V )−

(
t′∑
j=1

g(U ′
j)− |{j : g(U ′

j) 6≡ |T ∩ U ′
j|}|

)
≤ ĝ(V )− g(V ) ≤ 0,

which completes the proof.

Theorem 6.2.1 has also a defect form, which can be proved similarly:

Theorem 7.1.2 (Király and Szabó [27]). Let H = (V,E) be a hypergraph, T ⊆ V ,

p : 2V → Z+ be an intersecting supermodular function with p(∅) = p(V ) = 0, and

assume that H has an orientation covering p. De�ne b as in Theorem 6.2.1. For

an orientation D of H let YD ⊆ V denote the set of odd out-degree vertices in D.

Then

min {|T4YD| : D is an orientation of H covering p} =

max

{
b(V )−

t∑
j=1

b(Uj) + |{j : b(Uj) 6≡ |T ∩ Uj|}|

}
,

where the maximum is taken on partitions U1, U2, . . . , Ut of V .

7.2 Graph matching

It is shown in [27] that Theorem 6.2.1 contains the question whether an undirected

graph has a perfect matching, even in the special case when p can be positive only

on singletons. Let therefore G = (V,E) be an undirected graph, and q : 2E → Z+

as in Section 2.1. Then, q has NTCDCs, moreover we will encounter NTCDCs

in most of the natural formulations of the matching problem. The resolution of

the seeming contradiction is that there are formulations without NTCDCs. By

dualizing q w.r.t. the 2 vector, we get

(7.5) q∗2(F ) = 2|F |+ |
⋃

(E − F )| − |
⋃

E| = 2|F | − |{v ∈ V : e(v) ⊆ F}|,

for F ⊆ E, where e(v) denotes the set of edges adjacent to v. By considering the

the transpose of the hypergraph G, then this can be rewritten as

(7.6) q∗2(F ) = 2|F | − |V [F ]|.

This is a polymatroid considered by Lemma 7.0.8, and ν(q∗2) is characterized by a

partition formula.
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7.3 A pinning down problem

Let G = (V,E) be a graph whose vertices are points of the Euclidean plane. Let

p : V → R2, let us position vertex v into the point p(v), the edges of G are rigid

bars and G has �exible joins at the vertices. An in�nitesimal motion means an

assignment of velocity x(v) to each vertex v s.t. the bar lengths are preserved. The

framework (G, p) is called rigid if all the in�nitesimal motions of (G, p) correspond

to isometries of the plane. By pinning down a vertex v, we mean of �xing x(v) to

0. The question of pinning down the minimum number of vertices resulting a rigid

framework was solved by Lovász [33] in his seminal paper about matroid parity.

We say that G is generically rigid if each framework (G, p) with algebraically

independent coordinates are rigid. (In fact, G is generically rigid, if (G, p) is rigid

for any one of these frameworks.) Then, generic rigidity is the property of the

graph. For the generic case, instead of pinning down a minimum set of vertices it

is better to say that we are looking for the smallest complete graph that adding

it results in a generically rigid one. The problem was solved by Zs. Fekete [12].

The setup of [12] puts the problem into a bit more general framework. There, the

problem is examined for M2,l, l ∈ {2, 3}.
For Z ⊆ V , let KZ be the graph with vertex set Z having 4− l parallel edges

between any two vertices of Z. By assuming r(E) < 2|V | − l, we can ask for the

minimum Z ⊆ V s.t. G + KZ has rank 2|V | − l. For l = 2, this is equivalent to

the problem of shrinking a minimum vertex set Z s.t. G/Z has two edge-disjoint

spanning trees. Loosely speaking, for l = 3, this is equivalent of pinning down a

minimum set Z, s.t. the resulting graph is generically rigid. We may assume that

E is independent in M2,l, since if E is replaced by one of its maximum independent

sets, then the solution set does not change. For X ⊆ V , let e(X) be the set of

edges having at least one vertex in X. Fekete proved the following [12].

Lemma 7.3.1. Let l = 2, 3, E independent in M2,l, and r(E) < 2|V |−l. If Z ⊆ V

and |Z| ≥ 2, then

(7.7i) r(G+KZ) = minX⊇Z(2|X| − l + |e(V −X)|),

(7.7ii) r(G+KZ) = 2|V | − l if and only if |e(Y )| ≥ 2|Y | for every Y ⊆ V − Z.

Therefore, the goal is to maximize the size of the set V − Z s.t. |e(Y )| ≥
2|Y | for every Y ⊆ V − Z. Let f : 2V → Z+ be the polymatroid function s.t.
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f(X) = minX1∪̇X2=X(|e(X1)|+2|X2|), i.e. the polymatroid function obtained from

X 7→ |e(X)| by putting upper bound 2 on the coordinates (de�ned previously as

deletion w.r.t. the vector 2). Hence, for l = 2, the minimum cardinality set Z

to contract has size |V | − ν(f), and for l = 3, the minimum set to pin down has

size |V | − ν(f). It is shown in [12] that the computation of ν(f) reduces to the

maximum matching problem of graphs. Therefore, ν(f) can be computed very

e�ciently. However, it is not hard to prove from our previous results that ν(f) has

a partition type characterization. First, by Lemma 7.0.8, the polymatroid function

X 7→ |e(X)| has no NTCDCs. As f is obtained from X 7→ |e(X)| by deletion,

Claim 7.0.7 yields that f does not have one either. Thus,

ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of V . By the de�ni-

tion of f , we get the following.

Theorem 7.3.2 (Fekete, [12]).

ν(f) = min

(∣∣∣∣∣V −
t⋃

j=1

Uj

∣∣∣∣∣+
t∑

j=1

⌊
e(Uj)

2

⌋)
,

where the minimum is taken over all subpartitions U1, U2, . . . , Ut of V .

This answers the question of the case l = 2 as well as of the case l = 3. It is

a seeming contradiction that we get the same answer for both cases. However, for

being E independent in M2,l we left out a di�erent number of edges from G in the

di�erent cases.

7.4 A note on the weighted case

The solution of the weighted polymatroid parity problem is a long standing open

question for any case which does not reduce to the weighted matching problem of

graphs or to the weighted matroid intersection problem. The characterization is

messy for linear or for DCP polymatroids even in the cardinality case. Hence, we

might think that the class of NTCDC-free polymatroids is a good candidate to
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have a simple characterization in the weighted case. A natural question would be

that the system

x ∈ RS, x ≥ 0,(7.8)

x(U) ≤
⌊
f(U)

2

⌋
for every U ⊆ S(7.9)

describes the convex hull of matchings of f if f is NTCDC-free. However, this

is not true. The smallest example for this is the polymatroid f on ground set

S = {v1, v2, v3, v4}, with f(U) = 2|U | if |U | ≤ 1, f(U) = 3 if |U | = 2 and v1 ∈ U ,
and f(U) = 4 otherwise. Then, f has no NTCDCs and (1/2, 1/2, 1/2, 1/2) is a

vertex of (7.8-7.9). The example presented after Claim 2.6.5 is also good for this

purpose. In that case (1, 1/2, 1/2, 1/2) will be a vertex.
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Chapter 8

Open questions

8.1 Relation of matroid classes

There are some structural questions concerning the relation of (poly)matroid

classes presented in the dissertation which are left open. Figure 8.1 shows relations

between (poly)matroid classes and parity problems of particular (poly)matroids.

Adjectives indicating fullness or density are not indicated. We hope that it does

not cause confusions that we put matroid classes or properties in some boxes, poly-

matroid classes in others, and optimization problems into the rest. The reader is

asked to pass over this inaccuracy.

On the upper and left part we see abstract properties, while particular

(poly)matroid classes and problems on the right and lower part. From the theo-

retical point of view it would be impressive to discover further relations, between

the abstract properties. Say, we do not know the relation of pseudomodularity to

solidness or to (k, l)-matroids. We do not know the relation of DCP and MDCP

matroids, which however does not seem to be an important question as all the

known constructions for DCP matroids are in fact MDCP.

A more interesting problem is the existence of a reasonable common general-

ization of MDCP matroids and NTCDC-free polymatroids. This would also have

algorithmic interest. NTCDC-free polymatroids do not have structural properties

which would imply say linearity, but an example showing this statement would

help in completing the picture.
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8.2 Algorithmic aspects

This short section is dedicated to mention some special cases of the above polyma-

troid classes where the known polynomial algorithms can be applied to compute

a maximum matching and a combinatorial dual characterization.

As the matroid parity problem is more general than matroid intersection or

graph matching, an algorithmic point of view to the problem needs more involved

techniques and ideas. The very �rst algorithm, Lovász's one [35; 39] manipulates

with maximum matchings and the dual solution is derived from the interaction of

all maximum matchings. It is based on Theorem 2.3.1, and proves Theorem 2.5.1

in an algorithmic way. There are faster algorithms for the same problem presented

by Orlin and Vande Vate [45] and by Gabow and Stallmann [17].

We essentially have the family of DCP and NTCDC-free polymatroids, or some

special subclasses which have to be handled. Lovász algorithm can be used for some

DCP polymatroids. This algorithm is presented essentially in two di�erent ways,

by Lovász [35; 39] and by Schrijver [51]. Both uses the DCP, and also some extra

property. In Lovász' version, a principal extension is used at most once during the

algorithm, an then the added element is contracted. Schrijver's version relies on

the modularity of �ats. Both can be used in vector spaces (over a large enough

�eld), but any of them hardly in general DCP polymatroids. It is not immediately

clear that the numbers describing the contraction are small enough to obtain a

good characterization, but this task can be worked out. Where can we conclude

from this?

Most of our matroids lacks modularity, the approach based on modularity can

be used for problems coming form (k, 0)-matroids or for the linear cases.

The gain from the other case is that pseudomodular matroid are closed under

principal extension, this is good news. We conjecture that (k, l)-matroids are not

pseudomodular in general. However, (k, 0)-matroids, and (1, 1)-matroids satisfying

(3.2) are pseudomodular.

The problem of constructing an algorithm for general DCP matroids is therefore

an important open question. Clearly, the matroid oracles must be able to choose

a non-loop from the intersection of the spans of circuits of a NTCDC, and to

be able to do other algorithmic manipulations with �ats, but this is a secondary

issue. Dress and Lovász [10] remarks that for algebraic matroids we need also the
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development of oracles testing algebraic independence. Hence, if we are looking

for an algorithm for DCP matroids then it should be �rst developed for �nite

combinatorial matroids, say solid ones.

The two other algorithms for linear problems, Orlin and Vande Vate's one [45]

and Gabow and Stallmann's one [17] heavily rely on linearity we do not know how

to extend them to some special non-modular DCP matroids.

For NTCDC-free polymatroids the problem is pretty much solved. A recent

result is that Gyula Pap announced the �rst and only known algorithm for poly-

matroids without NTCDCs in his doctoral thesis [46].
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pseudomodular

Király-Szabó

lazy

NTCDC-freeDCP

(k, l)-matroids

graphic matroid

graph matching

Frank-Jordán-Szigeti

Mader's A-paths

hypergraphic transversal

linear,
algebraic

strong series
reduction

reduction
weak series

Figure 8.1: Relation of the parity problem of some matroids and polymatroids
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Summary

The dissertation focuses on matching problems of polymatroids arising in com-

binatorial and graph theoretical applications. The problem is computationally

hard in general, and all the previously known tractable cases are tractable due to

the double circuit property (DCP). In the �rst half we present new polymatroid

classes having the DCP, and also applications. The polymatroids of the second

half need a completely di�erent approach. Here we shown that parity problems of

polymatroids without non-trivial compatible double circuits (NTCDCs) also can

be handled.

First we deal with (k, l)-matroids which are natural generalizations of transver-

sal and graphic matroids. We prove that if the hypergraph (the ground set of the

matroid) satis�es a certain density condition, then the matroid has the DCP. Then,

we extend (k, l)-matroids by the class of solid polymatroids. Solid polymatroids

are de�ned by intersecting submodular functions, and the de�ning function must

satisfy some simple abstract properties to have the DCP. As an application we

get the formula for Mader's vertex-disjoint A-path problem, by proving that the

polymatroid in Lovász' formulation has a solid embedding.

Parity constrained connectivity problems have a central role in the disserta-

tion. We show that Frank, Jordán, and Szigeti's theorem which characterizes the

graphs with rooted k-edge-connected parity constrained orientations is an imme-

diate consequence of the parity of solid polymatroids. Very little is known about

parity constrained orientations where the connectivity requirement is given by a

crossing supermodular function, specially it is open to characterize the graphs hav-

ing strongly connected orientations with even out-degrees. We solve the problem

for the planar case, again by solid polymatroids.

Király and Szabó extended Frank, Jordán, and Szigeti's theorem to the case

when the connectivity requirement is given by an intersecting supermodular func-

tion. This problem is unlikely to reduce to the parity of polymatroids having the

DCP. We have shown that these polymatroids have no NTCDCs, and that a parti-

tion type formula characterizes the matchings of polymatroids without NTCDCs.

Other interesting applications are a pinning down and a connectivity augmentation

problem of Fekete.



Összefoglaló

A doktori disszertációban kombinatorikai és gráfelméleti alkalmazásokban felmerül®

polimatroidok párosítási feladataival foglalkozunk. A feladat bonyolultságelméleti

szempontból nehéz, s az összes eddig ismert kezelhet® eset kezelhet®sége a du-

pla kör tulajdonságnak (DCP) köszönhet®. A dolgozat els® felében új DCP

tulajdonságú polimatroidokat konstruálunk alkalmazásokkal. A második rész

polimatroidjai teljesen más megközelítést igényelnek, itt megmutatjuk, hogy a

nemtriviális kompatibilis dupla köröket (NTCDC) nem tartalmazó polimatroidok

párosítási feladata is kezelhet®. Célunk a kombinatorikus optimalizálás minél több

polimatroid párosítási feladatának közös keretbe foglalása.

El®ször (k, l)-matroidokkal foglalkozunk, melyek transzverzális és körmatroidok

természetes általánosításai. Megmutatjuk, hogy ha a hipergáf (a matroid alaphal-

maza) elég s¶r¶, akkor a matroid DCP. A (k, l)-matroidokat a tömör polima-

troidok osztályával általánosítjuk. Tömör polimatroidokat metsz® szubmoduláris

függvénnyel lehet de�niálni, s a DCP érdekében a de�niáló függvénynek teljesíteni

kell bizonyos abszrakt tulajdonságokat. Mader pontdiszjunkt A-utas feladata en-

nek érdekes alkalmazása, hisz mutatunk a Lovász által adott párosítási megfogal-

mazásában szerepl® polimatroid egy egyszer¶ tömör beágyazását.

A paritásos összefügg®ségi irányítási feladatok központi szerepet játszanak a

dolgozatban. Megmutatjuk, hogy Frank, Jordán, és Szigeti tétele ami karakter-

izálja a paritásos gyökeresen k-élösszefügg® irányítással rendelkez® gráfokat tömör

polimatroidok párosításából levezethet®. Nagyon keveset tudunk olyan paritásos

irányítási feladatokról, melyekben az összefügg®ségi igényt keresztez® szupermod-

uláris függvény írja le, speciálisan nyitott a csupa páros kifokú er®sen összefügg®

irányítással rendelkez® gráfok karakterizációja. Megmutatjuk, hogy síkgráfok es-

etén ez utóbbi feladat felírható egy tömör polimatroid párosításaként.

Király és Szabó általánosították Frank, Jordán, és Szigeti tételét arra az esetre

amikor az összefüggéségi igényt metsz® szupermoduláris függvény adja. Valószí-

n¶tlen, hogy ez az általános feladat DCP tulajdonságú polimatroid párosítására

vezetne. Megmutatjuk, hogy ezen feladat felírható NTCDC mentes polimatroid

párosításaként, s hogy ilyen polimatroidokra egy partíciós formula karakterizálja a

legnagyobb párosítás méretét. Két további alkalmazás Fekete egy síkbeli leszúrási

s egy összefügg®ségnövelési tétele.
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